zbMATH — the first resource for mathematics

Nonconforming Schwarz-spectral element methods for incompressible flow. (English) Zbl 07124550
Summary: We present scalable implementations of spectral-element-based Schwarz overlapping (overset) methods for the incompressible Navier-Stokes (NS) equations. Our SEM-based overset grid method is implemented at the level of the NS equations, which are advanced independently within separate subdomains using interdomain boundary-data exchanges at each timestep or sub-timestep. Central to this implementation is a general, robust, and scalable interpolation routine, that rapidly determines the computational coordinates for arbitrary points \(\mathbf{x}^\ast = (x^\ast, y^\ast, z^\ast) \in \operatorname{\Omega} \subset \mathbb{R}^3\). The communication kernels in gslib execute with at most \(\log P\) complexity for \(P\) MPI ranks and have scaled to \(P > 10^6\). Given their performance and robustness, they obviate the need for development of additional MPI-based code for the Schwarz implementation and thus greatly simplify the development of a scalable parallel Schwarz solver. The communication overhead due to the boundary-data interpolation and exchange is only about 1% of the total time-to-solution for most cases. The original interpolation routine has been extended to support integer and real discriminator fields to choose which domain is responsible for interpolation when more than two subdomains overlap in a given region. We discuss the computation/communication complexity and accuracy of the approach, and present performance measurements for \(P > 12,000\) processors. We also demonstrate convergence results for the Schwarz-SEM formulation in multiple 2D and 3D configurations and present application of this method to several challenging fluid and heat transfer problems.

76-XX Fluid mechanics
Full Text: DOI
[1] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-order methods for incompressible fluid flow, 9 (2002), Cambridge University Press · Zbl 1007.76001
[2] Dutta S, Fischer P, Garcia MH. Large Eddy Simulation (LES) of Flow and Bedload Transport at an Idealized 90° Diversion: Insight into Bulle Effect. Proceedings of the River Flow, Iowa City, USA, July 11-142016:101.
[3] Hosseini, S. M.; Vinuesa, R.; Schlatter, P.; Hanifi, A.; Henningson, D. S., Direct numerical simulation of the flow around a wing section at moderate Reynolds number, Int J Heat Fluid Flow, 61, 117-128 (2016)
[4] Merzari E, Obabko A, Fischer P. Spectral element methods for liquid metal reactors applications. arXiv:171109307, 2017.
[5] Orszag, S. A., Spectral methods for problems in complex geometrics, Numerical methods for partial differential equations, 273-305 (1979), Elsevier · Zbl 0448.65072
[6] Patera, A. T., A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J Comput Phys, 54, 3, 468-488 (1984) · Zbl 0535.76035
[7] Schwarz, H. A., Ueber einen Grenzübergang durch alternirendes Verfahren (1870), Zürcher u. Furrer · JFM 02.0214.02
[8] Miller, K., Numerical analogs to the Schwarz alternating procedure, Numer Math, 7, 2, 91-103 (1965) · Zbl 0154.41201
[9] Volkov, E. A., The method of composite meshes for finite and infinite regions with piecewise smooth boundary, Trudy Matematicheskogo Instituta imeni VA Steklova, 96, 117-148 (1968)
[10] Stoutemyer, D. R., Numerical implementation of the Schwarz alternating procedure for elliptic partial differential equations, SIAM J. Numer. Anal., 10, 2, 308-326 (1973) · Zbl 0279.65096
[11] Starius, G., Composite mesh difference methods for elliptic boundary value problems, Numerische Math, 28, 2, 243-258 (1977) · Zbl 0363.65078
[12] Angel, J. B.; Banks, J. W.; Henshaw, W. D., A high-order accurate FDTD scheme for Maxwell’s equations on overset grids, Proceedings of the international applied computational electromagnetics society symposium (ACES), 1-2 (2018), IEEE
[13] Steger, J.; Dougherty, F.; Benek, J.; Scheme, A. C.G., Advances in grid generation, ASME FED, 5, 59-69 (1983)
[14] Chandar, D. D.; Boppana, B.; Kumar, V., A comparative study of different overset grid solvers between OpenFOAM, StarCCM+ and Ansys-Fluent, Proceedings of the AIAA aerospace sciences meeting, 1564 (2018)
[15] Koblitz, A.; Lovett, S.; Nikiforakis, N.; Henshaw, W., Direct numerical simulation of particulate flows with an overset grid method, J Comput Phys, 343, 414-431 (2017) · Zbl 1380.76082
[16] CD-adapco, S.-C., V7. 02.008, User Manual (2012)
[17] Nichols, R. H.; Buning, P. G., Userâs manual for overflow 2.1 (2008), University of Alabama and NASA Langley Research Center
[18] Bassetti, F.; Brown, D.; Davis, K.; Henshaw, W.; Quinlan, D., Overture: an object-oriented framework for high performance scientific computing, Proceedings of the ACM/IEEE conference on supercomputing, 1-9 (1998), IEEE Computer Society
[19] Coder, J. G.; Hue, D.; Kenway, G.; Pulliam, T. H.; Sclafani, A. J.; Serrano, L., Contributions to the sixth drag prediction workshop using structured, overset grid methods, J Aircr, 1-14 (2017)
[20] Henshaw, W. D., A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids, J Comput Phys, 113, 1, 13-25 (1994) · Zbl 0808.76059
[21] Brazell, M. J.; Sitaraman, J.; Mavriplis, D. J., An overset mesh approach for 3D mixed element high-order discretizations, J Comput Phys, 322, 33-51 (2016) · Zbl 1351.76050
[22] Crabill, J. A.; Sitaraman, J.; Jameson, A., A high-order overset method on moving and deforming grids, Proceedings of the AIAA modeling and simulation technologies conference, 3225 (2016)
[23] Aarnes, J. R.; Haugen, N. E.L.; Andersson, H. I., High-order overset grid method for detecting particle impaction on a cylinder in a cross flow, Int J Comput Fluid D, 33, 1-2, 43-58 (2019)
[24] Cambier, L.; Heib, S.; Plot, S., The Onera elsA CFD software: input from research and feedback from industry, Mech Ind, 14, 3, 159-174 (2013)
[25] Merrill, B. E.; Peet, Y. T.; Fischer, P. F.; Lottes, J. W., A spectrally accurate method for overlapping grid solution of incompressible Navier-Stokes equations, J Comput Phys, 307, 60-93 (2016) · Zbl 1351.76203
[26] Chan, W.; Gomez, R., Rogers se, Buning pg. Best practices in overset grid generation. AIAA \(\# 2002-3191\), Proceedings of the 32nd fluid dynamics conference, St. Louis MI (2002)
[27] Tomboulides, A.; Lee, J.; Orszag, S., Numerical simulation of low mach number reactive flows, J Sci Comput, 12, 2, 139-167 (1997) · Zbl 0905.76055
[28] Fischer, P.; Schmitt, M.; Tomboulides, A., Recent developments in spectral element simulations of moving-domain problems, Recent progress and modern challenges in applied mathematics, modeling and computational science, 213-244 (2017), Springer · Zbl 1381.76247
[29] Malm, J.; Schlatter, P.; Fischer, P. F.; Henningson, D. S., Stabilization of the spectral element method in convection dominated flows by recovery of skew-symmetry, J Sci Comput, 57, 2, 254-277 (2013) · Zbl 1282.76145
[30] Lottes, J. W.; Fischer, P. F., Hybrid multigrid/Schwarz algorithms for the spectral element method, J Sci Comput, 24, 45-78 (2005) · Zbl 1078.65570
[31] Fischer, P.; Lottes, J., Hybrid Schwarz-multigrid methods for the spectral element method: Extensions to Navier-Stokes, (Kornhuber, R.; Hoppe, R.; Périaux, J.; Pironneau, O.; Widlund, O.; Xu, J., Domain decomposition methods in science and engineering series (2004), Springer, Berlin), 35-49 · Zbl 1067.65123
[32] Smith, B.; Bjorstad, P.; Gropp, W., Domain decomposition: parallel multilevel methods for elliptic partial differential equations (2004), Cambridge University press
[33] Peet, Y. T.; Fischer, P. F., Stability analysis of interface temporal discretization in grid overlapping methods, SIAM J Numer Anal, 50, 6, 3375-3401 (2012) · Zbl 1261.65094
[34] Fox, G.; Furmanski, W., Hypercube algorithms for neural network simulation: the Crystal_Accumulator and the Crystal Router, Proceedings of the third conference on hypercube concurrent computers and applications: architecture, software, computer systems, and general issues-volume 1, 714-724 (1988), ACM
[35] Noorani, A.; Peplinski, A.; Schlatter, P., Informal introduction to program structure of spectral interpolation in nek5000 (2015)
[36] Chandar, D. D., Assessment of interpolation strategies and conservative discretizations on unstructured overset grids in OpenFOAM, Proceedings of the AIAA aerospace sciences meeting, 0828 (2018)
[37] Noorani, A.; Sardina, G.; Brandt, L.; Schlatter, P., Particle transport in turbulent curved pipe flow, J Fluid Mech, 793, 248-279 (2016) · Zbl 1382.76273
[38] Fischer, P. F., Scaling limits for PDE-based simulation, Proceedings of the 22nd AIAA computational fluid dynamics conference, 3049 (2015)
[39] Escudier, M., Observations of the flow produced in a cylindrical container by a rotating endwall, Exper Fluids, 2, 4, 189-196 (1984)
[40] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to Re τ= 590, Phys Fluids, 11, 4, 943-945 (1999) · Zbl 1147.76463
[41] Vreman, A.; Kuerten, J. G., Comparison of direct numerical simulation databases of turbulent channel flow at Re τ= 180, Phys Fluids, 26, 1, 015102 (2014)
[42] Collins, J. T.; Conley, C. M.; Attig, J. N.; Baehl, M. M., Enhanced heat transfer using wire-coil inserts for high-heat-load applications, Technical Report (2002), Argonne National Lab., IL (US)
[43] Goering, A. Y., Numerical investigation of wire coil heat transfer augmentation, Ph.D. Thesis (2016)
[44] Mittal, K.; Fischer, P., Mesh smoothing for the spectral element method, J Sci Comput, 1-22 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.