Shelah’s pcf theory and its applications. (English) Zbl 0713.03024

Sei a eine unendliche Menge von regulären Kardinalzahlen, so daß \(\min (a)>| a|\) gilt. Sei d ein Ultrafilter auf a und \(\Pi\) a das Cartesische Produkt von a. Dann ist \(\Pi\) a/D eine Ordnung von \(\Pi\) a, wo für f,g\(\in \Pi a\), \(f=_ Dg\) genau dann, wenn \(\{\iota\in a:\) \(f(\iota)=g(\iota)\}\in D\), bzw. \(f\leq_ Dg\) genau dann, wenn \(\{\iota\in a:\) f(\(\iota\))\(\leq g(\iota)\}\in D\). cf(\(\Pi\) a/D) ist die Ordinalzahl, die die Kofinalität von \(\Pi\) a/D darstellt. \[ pcf(a)=\{\lambda:\;\lambda =cf(\Pi a/D)\quad bei\quad irgendeinem\quad D\}. \] Das Hauptresultat ist das folgende Theorem: Sei \(\lambda =cf(\Pi a/D)\) und \(\mu =\lim_ Da\) die einzige Kardinalzahl, für die bei jedem \(\beta <\mu\), \(\{\alpha\in a:\beta <\alpha \leq \mu \}\in D\) gilt. Dann gibt es für jedes reguläre \(\lambda '\) mit \(\mu <\lambda '<\lambda\) eine Menge \(a'\) von regulären Kardinalzahlen, \(| a'| =| a|\), und einen Ultrafilter \(D'\) auf \(a'\), so daß \(\lim_{D'}a'=\mu\) und \(cf(\Pi a'/D')=\lambda '.\)
Diese Theorie wird für die Konstruktion von Jonsson-Algebren auf verschiedenen Kardinalzahlen verwendet, wobei \((A,(f_ i)_{i<\omega})\) eine Jonsson-Algebra genannt wird, wenn es keine echte Teilalgebra \((B,(f_ i| B)_{i<\omega})\) gibt.
Von weiteren Resultaten der Kardinalzahlarithmetik sind die folgenden nennenswert: Theorem: Sei a ein Intervall von regulären Kardinalzahlen, \(a=[\min (a),\sup (a)]\), so daß \(\min (a)^{| a|}<\sup (a)\). Dann gilt \(\max (pcf(a))=| \Pi a|\). Theorem: Für jede Limesordinalzahl \(\delta\) gilt \(\aleph_{\delta}^{cf(\delta)}<\aleph_{(| \delta |^{cf(\delta)})^+}\).
Reviewer: A.Tauts


03E10 Ordinal and cardinal numbers
Full Text: DOI Link


[1] Delvin, K.J., Some weak versions of large cardinal axioms, Ann. math. logic, 5, 4, 291-325, (1973), (Section 3) · Zbl 0279.02051
[2] Easton, W.B., Powers of regular cardinals, Ann. math. logic, 1, 2, 139-178, (1970) · Zbl 0209.30601
[3] Erdo&#x030B;s, P.; Hajnal, A.; Máté, A.; Rado, R., Combinatorial set theory: partition relations for cardinals, (1984), North-Holland Amsterdam
[4] Galvin, F.; Hajnal, A., Inequalities for cardinal powers, Ann. of math., 101, 491-498, (1975) · Zbl 0327.02055
[5] M. Gitik and M. Magidor, The singular cardinals problem revisited, Preprint. · Zbl 0788.03066
[6] Jech, T., Set theory, (1978), Academic Press New York · Zbl 0419.03028
[7] T. Jech, On the cofinality of countable products of cardinal numbers, in: A. Baker, N. Bollobas and A. Hajnal, eds., A Tribute to P. Erdo&#x030B;s (Cambridge Univ. Press, Cambridge, to appear).
[8] T. Jech and S. Shelah, On a conjecture of Tarski on products of cardinals, Preprint. · Zbl 0731.04003
[9] Kunen, K., Set theory, An introduction to independence proofs, studies in logic and the foundations of mathematics, 102, (1980), North-Holland Amsterdam
[10] Rubin, M.; Shelah, S., Combinatorial problems on trees: partitions, δ-systems and large free subtrees, Ann. pure appl. logic, 33, 1, 43-81, (1987) · Zbl 0654.04002
[11] Shelah, S., Jonsson algebras in successor cardinals, Israel J. math., 30, 57-64, (1978) · Zbl 0384.03016
[12] Shelah, S., On a problem of kurosh, Jonsson groups, and applications, (), 373-394
[13] Shelah, S., A note on cardinal exponentiation, J. symbolic logic, 45, 56-66, (1980) · Zbl 0439.03038
[14] Shelah, S., Proper forcing, Lecture notes in mathematics, 940, (1982), Springer Berlin · Zbl 0495.03035
[15] Shelah, S., On power of singular cardinals, Notre dame J. formal logic, 27, 263-299, (1986) · Zbl 0637.03052
[16] Shelah, S., More on powers of singular cardinals, Israel J. math., 59, 299-326, (1987) · Zbl 0645.03048
[17] Shelah, S., Was Sierpiński right? I, Israel J. math., 62, 355-380, (1988) · Zbl 0657.03028
[18] Shelah, S., Successors of singulars, cofinalities of reduced products of cardinals and productivity of chain conditions, Israel J. math., 62, 213-256, (1988) · Zbl 0654.03037
[19] S. Shelah, Reflecting stationary sets, Arch. Math. Logic, to appear. · Zbl 0742.03017
[20] S. Shelah, ℵ_{ω+1} has a Jonsson algebra, Preprint.
[21] S. Shelah, More on pcf, Preprint.
[22] S. Shelah, Cardinal arithmetic, Preprint.
[23] Silver, J., On the singular cardinals problem, (), 265-268, Vancouver, B.C.
[24] Todorcevic, S., Remarks on cellularity in products, Compositio math., 57, 357-372, (1986) · Zbl 0616.54002
[25] Todorcevic, S., Partitioning pairs of countable ordinals, Acta math., 159, 261-294, (1987) · Zbl 0658.03028
[26] Todorcevic, S., Partition problems in topology, Contemp. math., 84, (1989) · Zbl 0659.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.