×

zbMATH — the first resource for mathematics

Deformation rigidity for subgroups of SL(n,\({\mathbb{Z}})\) acting on the n- torus. (English) Zbl 0713.57022
The smooth and analytic rigidity of the standard action of a subgroup of SL(n,\({\mathbb{Z}})\) on the n-dimensional torus is announced provided that \(n>2\) and the subgroup has finite index. The sketch of the proof is included. The details will appear elsewhere. Some related results are discussed.
Reviewer: P.Walczak

MSC:
57S25 Groups acting on specific manifolds
58H15 Deformations of general structures on manifolds
22E40 Discrete subgroups of Lie groups
57S20 Noncompact Lie groups of transformations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). · Zbl 0176.19101
[2] Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235 – 272 (1975). · Zbl 0316.57026
[3] Armand Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21 – 55. · Zbl 0472.22002
[4] L. Flamino and A. Katok, Rigidity of symplectic Anosov diffeomorphisms on low dimensional tori, Cal. Tech., preprint, 1989. · Zbl 0725.58033
[5] John Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), 117 – 124. · Zbl 0191.21604
[6] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[7] S. Hurder, Deformation rigidity and structural stability for Anosov actions of higher-rank lattices, preprint. · Zbl 0754.58029
[8] S. Hurder, Problems on rigidity of group actions and cocycles, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 473 – 484. · Zbl 0589.22006
[9] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 5 – 61 (1991). · Zbl 0725.58034
[10] J. Lewis, Infinitesimal rigidity for the action of SL(n, Z) on T, Thesis, University of Chicago, May, 1989.
[11] A. N. Livšic, Cohomology of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1296 – 1320 (Russian).
[12] R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II, Comm. Math. Phys. 109 (1987), no. 3, 369 – 378. · Zbl 0673.58036
[13] R. de la Llave, J. M. Marco, and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2) 123 (1986), no. 3, 537 – 611. · Zbl 0603.58016
[14] J. M. Marco and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems. I, Comm. Math. Phys. 109 (1987), no. 4, 681 – 689. · Zbl 0628.58045
[15] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. · Zbl 0732.22008
[16] Gopal Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. (2) 96 (1972), 296 – 317. · Zbl 0245.22013
[17] Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. · Zbl 0606.58003
[18] Dennis Stowe, The stationary set of a group action, Proc. Amer. Math. Soc. 79 (1980), no. 1, 139 – 146. · Zbl 0454.57027
[19] Robert J. Zimmer, Lattices in semisimple groups and invariant geometric structures on compact manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 152 – 210.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.