×

Zeta functions associated to admissible representations of compact \(p\)-adic Lie groups. (English) Zbl 1473.22013

Summary: Let \(G\) be a profinite group. A strongly admissible smooth representation \(\rho\) of \(G\) over \(\mathbb{C}\) decomposes as a direct sum \(\rho \cong \bigoplus _{\pi \in \operatorname{Irr}(G)} m_\pi (\rho ) \pi\) of irreducible representations with finite multiplicities \(m_\pi (\rho )\) such that, for every positive integer \(n\), the number \(r_n(\rho )\) of irreducible constituents of dimension \(n\) is finite. Examples arise naturally in the representation theory of reductive groups over nonarchimedean local fields. In this article we initiate an investigation of the Dirichlet generating function \[\zeta _\rho (s) = \sum_{n=1}^\infty r_n(\rho ) n^{-s} = \sum _{\pi \in \operatorname{Irr}(G)} \frac{m_\pi (\rho )}{(\dim \pi )^s}\] associated to such a representation \(\rho \).
Our primary focus is on representations \(\rho = \operatorname{Ind}_H^G(\sigma )\) of compact \(p\)-adic Lie groups \(G\) that arise from finite-dimensional representations \(\sigma\) of closed subgroups \(H\) via the induction functor. In addition to a series of foundational results – including a description in terms of \(p\)-adic integrals – we establish rationality results and functional equations for zeta functions of globally defined families of induced representations of potent pro-\(p\) groups. A key ingredient of our proof is Hironaka’s resolution of singularities, which yields formulae of Denef type for the relevant zeta functions.
In some detail we consider representations of open compact subgroups of reductive \(p\)-adic groups that are induced from parabolic subgroups. Explicit computations are carried out by means of complementing techniques: (i) geometric methods that are applicable via distance-transitive actions on spherically homogeneous rooted trees, and (ii) the \(p\)-adic Kirillov orbit method. Approach (i) is closely related to the notion of Gelfand pairs and works equally well in positive defining characteristic.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
11M41 Other Dirichlet series and zeta functions
20E18 Limits, profinite groups
20C15 Ordinary representations and characters
20G25 Linear algebraic groups over local fields and their integers
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aizenbud, Avraham; Avni, Nir, Representation growth and rational singularities of the moduli space of local systems, Invent. Math., 204, 1, 245-316 (2016) · Zbl 1401.14057 · doi:10.1007/s00222-015-0614-8
[2] Avni, Nir; Klopsch, Benjamin; Onn, Uri; Voll, Christopher, Representation zeta functions of some compact \(p\)-adic analytic groups. Zeta functions in algebra and geometry, Contemp. Math. 566, 295-330 (2012), Amer. Math. Soc., Providence, RI · Zbl 1281.22004 · doi:10.1090/conm/566/11226
[3] Avni, Nir; Klopsch, Benjamin; Onn, Uri; Voll, Christopher, Representation zeta functions of compact \(p\)-adic analytic groups and arithmetic groups, Duke Math. J., 162, 1, 111-197 (2013) · Zbl 1281.22005 · doi:10.1215/00127094-1959198
[4] Avni, Nir; Klopsch, Benjamin; Onn, Uri; Voll, Christopher, Similarity classes of integral \(\mathfrak{p} \)-adic matrices and representation zeta functions of groups of type \(\mathsf{A}_2\), Proc. Lond. Math. Soc. (3), 112, 2, 267-350 (2016) · Zbl 1409.11071 · doi:10.1112/plms/pdv071
[5] Avni, Nir; Klopsch, Benjamin; Onn, Uri; Voll, Christopher, Arithmetic groups, base change, and representation growth, Geom. Funct. Anal., 26, 1, 67-135 (2016) · Zbl 1348.20054 · doi:10.1007/s00039-016-0359-6
[6] Bartholdi, Laurent; Grigorchuk, Rostislav I., On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J., 28, 1, 47-90 (2002) · Zbl 1011.20028
[7] Bass, Hyman; Lubotzky, Alexander; Magid, Andy R.; Mozes, Shahar, The proalgebraic completion of rigid groups, Geom. Dedicata. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), 95, 19-58 (2002) · Zbl 1059.20036 · doi:10.1023/A:1021221727311
[8] Batyrev, Victor V., Birational Calabi-Yau \(n\)-folds have equal Betti numbers. New trends in algebraic geometry, Warwick, 1996, London Math. Soc. Lecture Note Ser. 264, 1-11 (1999), Cambridge Univ. Press, Cambridge, England · Zbl 0955.14028 · doi:10.1017/CBO9780511721540.002
[9] Bekka, M. Bachir; de la Harpe, Pierre, Irreducibility of unitary group representations and reproducing kernels Hilbert spaces, Expo. Math., 21, 2, 115-149 (2003) · Zbl 1037.22009 · doi:10.1016/S0723-0869(03)80014-2
[10] Blondel, Corinne, Quelques propri\'{e}t\'{e}s des paires couvrantes, Math. Ann., 331, 2, 243-257 (2005) · Zbl 1062.22035 · doi:10.1007/s00208-004-0579-1
[11] Bump, Daniel, Lie groups, Graduate Texts in Mathematics 225, xii+451 pp. (2004), Springer-Verlag, New York · Zbl 1053.22001 · doi:10.1007/978-1-4757-4094-3
[12] Bushnell, Colin J.; Henniart, Guy, The local Langlands conjecture for \(\rm GL(2)\), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 335, xii+347 pp. (2006), Springer-Verlag, Berlin · Zbl 1100.11041 · doi:10.1007/3-540-31511-X
[13] Campbell, Peter S.; Nevins, Monica, Branching rules for unramified principal series representations of \({\rm GL}(3)\) over a \(p\)-adic field, J. Algebra, 321, 9, 2422-2444 (2009) · Zbl 1168.22008 · doi:10.1016/j.jalgebra.2009.01.013
[14] Casselman, William, The restriction of a representation of \({\rm GL}_2(k)\) to \({\rm GL}_2({\mathfrak{o}})\), Math. Ann., 206, 311-318 (1973) · Zbl 0253.20062 · doi:10.1007/BF01355984
[15] Curtis, Charles W.; Reiner, Irving, Representation theory of finite groups and associative algebras, Wiley Classics Library, xiv+689 pp. (1988), John Wiley & Sons, Inc., New York · Zbl 0634.20001
[16] Danilov, V. I., Cohomology of algebraic varieties. Algebraic geometry, II, Encyclopaedia Math. Sci. 35, 1-125, 255-262 (1996), Springer, Berlin · Zbl 0830.00008 · doi:10.1007/978-3-642-60925-1\_1
[17] Denef, J., On the degree of Igusa’s local zeta function, Amer. J. Math., 109, 6, 991-1008 (1987) · Zbl 0659.14017 · doi:10.2307/2374583
[18] Denef, Jan; Meuser, Diane, A functional equation of Igusa’s local zeta function, Amer. J. Math., 113, 6, 1135-1152 (1991) · Zbl 0749.11053 · doi:10.2307/2374901
[19] Di71 J. D. Dixon, The structure of linear groups, Van Nostrand Reinhold Co., London, 1971. · Zbl 0232.20079
[20] Dixon, J. D.; du Sautoy, M. P. F.; Mann, A.; Segal, D., Analytic pro-\(p\) groups, Cambridge Studies in Advanced Mathematics 61, xviii+368 pp. (1999), Cambridge University Press, Cambridge, England · Zbl 0934.20001 · doi:10.1017/CBO9780511470882
[21] Dung, Duong H.; Voll, Christopher, Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups, Trans. Amer. Math. Soc., 369, 9, 6327-6349 (2017) · Zbl 1475.20059 · doi:10.1090/tran/6879
[22] Gonz\'{a}lez-S\'{a}nchez, Jon, On \(p\)-saturable groups, J. Algebra, 315, 2, 809-823 (2007) · Zbl 1161.20024 · doi:10.1016/j.jalgebra.2007.02.005
[23] Gonz\'{a}lez-S\'{a}nchez, Jon, Kirillov’s orbit method for \(p\)-groups and pro-\(p\) groups, Comm. Algebra, 37, 12, 4476-4488 (2009) · Zbl 1201.20022 · doi:10.1080/00927870802545679
[24] Gonz\'{a}lez-S\'{a}nchez, J.; Jaikin-Zapirain, A., On the structure of normal subgroups of potent \(p\)-groups, J. Algebra, 276, 1, 193-209 (2004) · Zbl 1056.20014 · doi:10.1016/j.jalgebra.2003.12.006
[25] Gonz\'{a}lez-S\'{a}nchez, Jon; Jaikin-Zapirain, Andrei; Klopsch, Benjamin, The representation zeta function of a FAb compact \(p\)-adic Lie group vanishes at \(-2\), Bull. Lond. Math. Soc., 46, 2, 239-244 (2014) · Zbl 1292.22006 · doi:10.1112/blms/bdt090
[26] Gonz\'{a}lez-S\'{a}nchez, Jon; Klopsch, Benjamin, Analytic pro-\(p\) groups of small dimensions, J. Group Theory, 12, 5, 711-734 (2009) · Zbl 1183.20030 · doi:10.1515/JGT.2009.006
[27] Gross, Benedict H., Some applications of Gel\cprime fand pairs to number theory, Bull. Amer. Math. Soc. (N.S.), 24, 2, 277-301 (1991) · Zbl 0733.11018 · doi:10.1090/S0273-0979-1991-16017-9
[28] Harder, G., Eisenstein cohomology of arithmetic groups. The case \({\rm GL}_2\), Invent. Math., 89, 1, 37-118 (1987) · Zbl 0629.10023 · doi:10.1007/BF01404673
[29] Harris, Michael; Taylor, Richard, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies 151, viii+276 pp. (2001), Princeton University Press, Princeton, NJ · Zbl 1036.11027
[30] Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics 52, xvi+496 pp. (1977), Springer-Verlag, New York\textendash Heidelberg · Zbl 0367.14001
[31] Henniart, Guy, Une preuve simple des conjectures de Langlands pour \({\rm GL}(n)\) sur un corps \(p\)-adique, Invent. Math., 139, 2, 439-455 (2000) · Zbl 1048.11092 · doi:10.1007/s002220050012
[32] Hironaka, Heisuke, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) {\bf79} (1964), 109-203; ibid. (2), 79, 205-326 (1964) · Zbl 1420.14031 · doi:10.2307/1970547
[33] Hrushovski, Ehud; Martin, Ben; Rideau, Silvain, Definable equivalence relations and zeta functions of groups, J. Eur. Math. Soc. (JEMS), 20, 10, 2467-2537 (2018) · Zbl 1469.03105 · doi:10.4171/JEMS/817
[34] Isaacs, I. Martin, Character theory of finite groups, xii+303 pp. (1994), Dover Publications, Inc., New York · Zbl 0849.20004
[35] Jaikin-Zapirain, A., Zeta function of representations of compact \(p\)-adic analytic groups, J. Amer. Math. Soc., 19, 1, 91-118 (2006) · Zbl 1092.20023 · doi:10.1090/S0894-0347-05-00501-1
[36] Ki18 S. Kionke, Groups acting on rooted trees and their representations on the boundary, J. Algebra (2019), DOI 10.1016/j.jalgebra.2019.03.023. · Zbl 1467.20017
[37] Klopsch, Benjamin, On the Lie theory of \(p\)-adic analytic groups, Math. Z., 249, 4, 713-730 (2005) · Zbl 1065.22005 · doi:10.1007/s00209-004-0717-1
[38] Klopsch, Benjamin, Representation growth and representation zeta functions of groups, Note Mat., 33, 1, 107-120 (2013) · Zbl 1279.22028
[39] Koll\'{a}r, J\'{a}nos, Lectures on resolution of singularities, Annals of Mathematics Studies 166, vi+208 pp. (2007), Princeton University Press, Princeton, NJ · Zbl 1113.14013
[40] Komori, Yasushi; Matsumoto, Kohji; Tsumura, Hirofumi, On Witten multiple zeta-functions associated with semisimple Lie algebras II, J. Math. Soc. Japan, 62, 2, 355-394 (2010) · Zbl 1210.11099
[41] Larsen, Michael; Lubotzky, Alexander, Representation growth of linear groups, J. Eur. Math. Soc. (JEMS), 10, 2, 351-390 (2008) · Zbl 1142.22006 · doi:10.4171/JEMS/113
[42] Lubotzky, Alexander; Martin, Benjamin, Polynomial representation growth and the congruence subgroup problem, Israel J. Math., 144, 293-316 (2004) · Zbl 1134.20056 · doi:10.1007/BF02916715
[43] Mandelbrojt, S., Dirichlet series: Principles and methods, x+166 pp. (1972), D. Reidel Publishing Co., Dordrecht · Zbl 0241.30010
[44] Neukirch, J\"{u}rgen, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 322, xviii+571 pp. (1999), Springer-Verlag, Berlin · Zbl 0956.11021 · doi:10.1007/978-3-662-03983-0
[45] Nevins, Monica, On branching rules of depth-zero representations, J. Algebra, 408, 1-27 (2014) · Zbl 1335.22019 · doi:10.1016/j.jalgebra.2014.03.016
[46] Onn, Uri; Singla, Pooja, On the unramified principal series of \(\text{GL}(3)\) over non-Archimedean local fields, J. Algebra, 397, 1-17 (2014) · Zbl 1298.22020 · doi:10.1016/j.jalgebra.2013.08.022
[47] Reiner, I., Maximal orders, London Mathematical Society Monographs. New Series 28, xiv+395 pp. (2003), The Clarendon Press, Oxford University Press, Oxford · Zbl 1024.16008
[48] Renard, David, Repr\'{e}sentations des groupes r\'{e}ductifs \(p\)-adiques, Cours Sp\'{e}cialis\'{e}s [Specialized Courses] 17, vi+332 pp. (2010), Soci\'{e}t\'{e} Math\'{e}matique de France, Paris · Zbl 1186.22020
[49] Rossmann, Tobias, Topological representation zeta functions of unipotent groups, J. Algebra, 448, 210-237 (2016) · Zbl 1409.11074 · doi:10.1016/j.jalgebra.2015.09.050
[50] Rossmann, Tobias, Computing local zeta functions of groups, algebras, and modules, Trans. Amer. Math. Soc., 370, 7, 4841-4879 (2018) · Zbl 1440.11175 · doi:10.1090/tran/7361
[51] Sarnak, Peter; Adams, Scot, Betti numbers of congruence groups, Israel J. Math., 88, 1-3, 31-72 (1994) · Zbl 0843.11027 · doi:10.1007/BF02937506
[52] Se79 J.-P. Serre, Local fields, Springer-Verlag, New York\textendash Heidelberg, 1979. · Zbl 0423.12016
[53] Se02 J.-P. Serre, Galois cohomology, Springer-Verlag, Berlin, 2002. · Zbl 1004.12003
[54] Stanley, Richard P., Combinatorial reciprocity theorems, Advances in Math., 14, 194-253 (1974) · Zbl 0294.05006 · doi:10.1016/0001-8708(74)90030-9
[55] St96 R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Birkh\"auser Boston, Inc., Boston, MA, 1996. · Zbl 0838.13008
[56] Stasinski, A.; Voll, C., Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type \(B\), Amer. J. Math., 136, 2, 501-550 (2014) · Zbl 1286.11140 · doi:10.1353/ajm.2014.0010
[57] Vign\'{e}ras, Marie-France, Repr\'{e}sentations \(l\)-modulaires d’un groupe r\'{e}ductif \(p\)-adique avec \(l\ne p\), Progress in Mathematics 137, xviii and 233 pp. (1996), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0859.22001
[58] Voll, Christopher, Functional equations for zeta functions of groups and rings, Ann. of Math. (2), 172, 2, 1181-1218 (2010) · Zbl 1314.11057 · doi:10.4007/annals.2010.172.1185
[59] Voll, Christopher, Zeta functions of groups and rings-Recent developments. Groups St Andrews 2013, London Math. Soc. Lecture Note Ser. 422, 469-492 (2015), Cambridge Univ. Press, Cambridge, England · Zbl 1377.11103
[60] Weil, Andr\'{e}, Adeles and algebraic groups, Progress in Mathematics 23, iii+126 pp. (1982), Birkh\"{a}user, Boston, Mass. · Zbl 0493.14028
[61] Witten, Edward, On quantum gauge theories in two dimensions, Comm. Math. Phys., 141, 1, 153-209 (1991) · Zbl 0762.53063
[62] ZoXX M. Zordan, Poincar\'e series of Lie lattices and representation zeta functions of arithmetic groups, arXiv:1704.04165 (2017).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.