zbMATH — the first resource for mathematics

Adapted Fourier transform of Schwartz spaces for certain nilpotent Lie groups. (English) Zbl 0714.43005
For the Schwartz class functions on a symplectic manifold one can define a star product *. In particular for a connected and simply connected nilpotent Lie group G with Lie algebra \({\mathfrak g}\), we can consider a smooth star product * of the well-behaved functions on some Zariski open invariant set \(F=\coprod_{\lambda \in V}{\mathfrak O}^{\lambda}\) of coadjoint orbits on the dual to \({\mathfrak g}\) vector space \({\mathfrak g}^*\). With this *-product on each coadjoint orbit \({\mathfrak O}^{\lambda}\cong {\mathbb{R}}^{2k}_{(p,q)}\) one can introduce the weight \(\Omega =2^{(1/2)\dim {\mathcal O}^{\lambda}}e^{-(p^ 2+q^ 2)}\), the weighted space \(L^ 2({\mathfrak O}^{\lambda})*\Omega\), the left *-product representation \(T^{\lambda}\) of the Schwartz class function algebra \({\mathcal S}({\mathfrak O}^{\lambda})\) and finally, the intertwining operator between \(L^ 2({\mathcal O}^{\lambda})*\Omega\) and the left regular representation space \(L^ 2_{polar}({\mathcal O}^{\lambda})\simeq L^ 2({\mathbb{R}}^ k)\). Then the nilpotent (adapted) Fourier transform of a Schwartz class function \(f\in {\mathcal S}(G)\) is defined by \[ \Theta (f)|_{{\mathcal O}^{\lambda}}:=(T^{\lambda})^{-1}\circ \pi^{\lambda}(f), \] where \(\pi^{\lambda}\) is the irreducible representation of G on \(L^ 2_{polar}({\mathcal O}^{\lambda})\), corresponding to the orbit \({\mathcal O}^{\lambda}\). This Fourier transform can be represented by some oscillating integral formula.
In a previous work [C. R. Acad. Sci., Paris, Sér. I 305, 769-772 (1987; Zbl 0643.43003)] the author has proved that \(\Theta\) : \({\mathcal S}(G)\to C^{\infty}(V,{\mathcal S}({\mathbb{R}}^{2k}_{(p,q)}))\) is a continuous map from \({\mathcal S}(G)\) into the space of \(C^{\infty}\)-functions on V with values in the Schwartz space on the standard symplectic space \(R^{2k}\) with coordinates \((p_ 1,...,p_ k,q^ 1,...,q^ k)=(p,q).\)
In the paper under review the author gives some condition (H) guaranting the density of \(\Theta\) (\({\mathcal S}(G))\) in \(C^{\infty}(V,{\mathcal S}({\mathbb{R}}^{2k}_{(p,q)}))\) (Theorem 5). It must be remarked some related results of Nghiem Xuan Hai based on the Generalized Gel’fand-Kirillov conjecture and the Schrödinger representation [C. R. Acad. Sci., Paris, Sér. I 293, 381-384 (1981; Zbl 0472.43008)].
Reviewer: Do Ngoc Diep

43A32 Other transforms and operators of Fourier type
43A80 Analysis on other specific Lie groups
22E25 Nilpotent and solvable Lie groups
Full Text: DOI
[1] Bayen, F.; Flato, M.; Fronsdal, C.; Licheronowicz, A.; Stherheimer, D., Deformation theory and quantization, Ann. phys., 61-151, (1978)
[2] Vergne, M., La structure de Poisson sur l’algebre symetrique d’une algebre de Lie nilpotente, Bull. soc. math-France, 100, 301-335, (1972) · Zbl 0256.17002
[3] Kirillov, A., Elements de la théorie dés représentations, (1974), Moscou
[4] Arnal, D.; Cortet, J.C., * product in the method of orbits for nilpotent groups, J. g. p., 22, 29-34, (1985) · Zbl 0616.46041
[5] Arnal, D., * products and representations of nilpotent groups, I.c.t.p., (nov. 1986), Trieste
[6] Zahir, H., Continuitéde la transformation de Fourier nilpotent, C. R. acad. sci Paris t., 305, 769-772, (1987), Serie I · Zbl 0643.43003
[7] Tréves, F., Topological space, distributions and kernels, (1967), Academic press INC
[8] Ratcliff, G., A 3-steeps nilpotent groups, Journal of functional analysis, 62, 38-64, (1985) · Zbl 0571.22011
[9] Arnal, D.; Cahen, M.; Gutt, S., Deformation on coadjoint orbits, J. g. p., Vol 3, n° 3, 327-351, (1986) · Zbl 0616.58013
[10] Poulsen, N.S., On C∞ - vectors and intertwing bilineare forms for representations of Lie groups, Journal of functional analysis, 9, 87-120, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.