zbMATH — the first resource for mathematics

Variational inequalities and the pricing of American options. (English) Zbl 0714.90004
Summary: This paper is devoted to the derivation of some regularity properties of pricing functions for American options and to the discussions of numerical methods, based on the Bensoussan-Lions methods of variational inequalities. In particular, we provide a complete justification of the so-called Brennan-Schwartz algorithm for the valuation of American put options.

91B28 Finance etc. (MSC2000)
60G40 Stopping times; optimal stopping problems; gambling theory
49J40 Variational inequalities
60J60 Diffusion processes
65K10 Numerical optimization and variational techniques
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
91B24 Microeconomic theory (price theory and economic markets)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
91B62 Economic growth models
PDF BibTeX Cite
Full Text: DOI
[1] Adams, R. A.: Sobolev Spaces, Academic Press, New York, 1975. · Zbl 0314.46030
[2] Bensoussan, A.: On the theory of option pricing, Acta Appl. Math. 2 (1984), 139-158. · Zbl 0554.90019
[3] Bensoussan, A. and Lions, J. L.: Applications des inéquations variationelles en contrôle stochastique, Dunod, Paris, 1978. · Zbl 0411.49002
[4] Black, F. and Scholes, M.: The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), 637-659. · Zbl 1092.91524
[5] Brennan, M. J. and Schwartz, E. S.: The valuation of the American put option, J. Finance 32 (1977), 449-462.
[6] Chandrasekaran, R.: A special case of the complementary pivot problem, Opsearch 7 (1970), 263-268.
[7] Chung, S. J.: A note on the complexity of LCP: the Lcp is strongly NP-complete, Technical Report 792, Department of Industrial and Operations Engineering, The university of Michigan, Ann Arbor, 1979.
[8] Cottle, R. W. and Dantzig, G. B.: Complementary pivot theory of mathematical programming, Linear Algebra Appl. 1 (1968), 103-125. · Zbl 0155.28403
[9] Cottle, R. W. and Sacher, R. S.: On the solution of large, structured linear complementary problems: the tridiagonale case, Appl. Math. Optim. 3 (1977), 321-340. · Zbl 0375.90048
[10] Cottle, R. W. and Veinott, A. F.Jr: Polyhedral sets having a least element. Math. Programming 3 (1972), 238-249. · Zbl 0245.90015
[11] El, Karoui, N.: Les aspects probabilistes du contrôle stochastique, Lecture Notes in Mathematics 876, 72-238, Springer-Verlag, New York, 1981. · Zbl 0472.60002
[12] El Karoui, N., Millet, A., and Lepeltier, J.-P.: A probabilistic approach to the reduite, preprint, 1988.
[13] El Karoui, N. and Karatzas, I.: A new approach to the Skorohod problem and its applications. To appear in Stochastics. · Zbl 0735.60046
[14] Friedman, A.: Stochastic Differential Equations, 2 vols., Academic Press, New York, 1976. · Zbl 0323.60057
[15] Friedman, A.: Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal. 18 (1975), 151-176. · Zbl 0295.35045
[16] Gabay, D.: Modéles stochastiques des marchés financiers: l’équation de valuation de la finance, IFAC Conference on Distributed Parameter Systems, Toulouse, 1982.
[17] Garman, M. and Kohlhagen, S.: Foreign currency option values, J. Internat. Money Finance 2 (1983), 231-237.
[18] Glowinski, R., Lions, J.-L., and Trémollières, R.: Analyse numérique des inéquations variationnelles, Dunod, Paris, 1976.
[19] Harrison, J. M. and Pliska, S. R.: Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process. Appl. 11 (1981), 215-260. · Zbl 0482.60097
[20] Jaillet, P., Lamberton, D., and Lapeyre, B.: Inéquations variationnelles et théorie des options, C.R. Acad. Sci. Paris Série I, 307 (1988), 961-965. · Zbl 0825.90044
[21] Jaillet, P., Lamberton, D., and Lapeyre, B.: Analyse numérique des options américaines, Cahier du CERMA No. 9, 1988, pp. 66-126.
[22] Karatzas, I.: On the pricing of American options, Appl. Math. Optim. 17 (1988), 37-60. · Zbl 0699.90010
[23] Karatzas, I.: Applications of stochastic calculus in financial economics, to appear in Lecture Notes in Control and Information Sciences. · Zbl 0721.90013
[24] Karatzas, I.: Optimization problems in the theory of continuous trading, SIAM J. Control Optim. 27 (1989), 1221-1259. · Zbl 0701.90008
[25] Kinderlehrer, D. and Stampacchia, G.: An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980. · Zbl 0457.35001
[26] Ladyzenskaja, O. A., Solonnikov, V. A., and Ural’ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type, translations of Mathematical Monographs 23, AMS, 1968.
[27] Lemke, C. E.: Bimatrix equilibrium points and mathematical programming, Management Sci. 11 (1965), 681-689. · Zbl 0139.13103
[28] Maingueneau, M. A.: Temps d’arrêts optimaux et théorie générale, Séminaire de Probabilités XII, Lect. Notes in Mathematics 649, Springer-Verlag, New York, 1978, pp. 457-467.
[29] Saigal, R.: A note on a special linear complementary problem, Opsearch 7 (1970), 175-183.
[30] Samelson, H., Thrall, R. M., and Wesler, O.: A partition theorem for Euclidean n-space, Proc. Amer. Math. Soc. 9 (1958), 805-807. · Zbl 0117.37901
[31] Tucker, A. W.: Principal pivoting transforms of square matrices, SIAM Rev. 5 (1963), 305.
[32] van, Moerbeke, P.: On optimal stopping and free boundary problems, Arch. Rational Mech. Anal. 60 (1976), 101-148. · Zbl 0336.35047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.