×

Rough fuzzy sets and fuzzy rough sets. (English) Zbl 0715.04006

The notion of a rough set was introduced by Pawlak in 1982 and he considered rough sets more useful and more general than fuzzy sets. In this paper, the authors try to argue that we cannot compare one notion with the other because both notions aim to different purposes. Instead of turning them into rival theories, the paper gives an investigation around the two notions in order to lay bare their respective specificity. This paper is very interesting and it shows that the idea of a rough set can be combined with fuzzy sets in a fruitful way.
Reviewer: Li Hongxing

MSC:

03E72 Theory of fuzzy sets, etc.
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606
[2] DOI: 10.1007/BF01001956 · Zbl 0501.68053
[3] DOI: 10.1016/S0165-0114(85)80029-4 · Zbl 0588.04004
[4] Caianiello E. R., Proc. 1st Inter. Conf. on Pattern Recognition (1973)
[5] Shafer G., A Mathematical Theory of Evidence (1976) · Zbl 0326.62009
[6] Zadeh L. A., Information Sciences 3 (1971)
[7] Fariñas del Cerro L., The Mathematics of Fuzzy Systems pp 103– (1986)
[8] Zadeh L. A., Information Sciences 3 (1971)
[9] Bonissone P. P., Proc. IEEE Inter. Conf. on Cybernetics and Society (1979)
[10] DOI: 10.1016/S0020-7373(84)80022-X · Zbl 0541.68077
[11] DOI: 10.1016/0306-4573(77)90018-8 · Zbl 0361.68136
[12] DOI: 10.1016/0165-0114(78)90029-5 · Zbl 0377.04002
[13] DOI: 10.1016/0020-0255(84)90020-3 · Zbl 0552.68082
[14] DOI: 10.1016/0165-0114(87)90096-0 · Zbl 0633.68099
[15] S. M. K. Wong and W. Ziarko , ” A probabilistic model of approximate classification and decision rules with uncertainties and inductive learning .” Technical Report CS-85-23 , University of Regina , Saskatchewan , 1985 .
[16] DOI: 10.1016/S0020-7373(88)80032-4 · Zbl 0663.68094
[17] DOI: 10.1016/0165-0114(89)90197-8 · Zbl 0664.04010
[18] Dubois D., Possibility Theory An Approach to Computerized Processing of Uncertainty (1988)
[19] Caianiello E. R., Topics in the General Theory of Structures (1987)
[20] Caianiello E. R., Proc. 1st Napoli Meeting on the Mathematics of Fuzzy Systems (1984)
[21] Caianiello E. R., Int. J. General Syst., II (1985)
[22] DOI: 10.1016/0888-613X(87)90024-7 · Zbl 0641.68158
[23] DOI: 10.1016/0005-1098(85)90004-4 · Zbl 0596.62007
[24] Dempster A. P., Annnals of Mathematical Statistics 38 (1967)
[25] Bezdek J. C., Fuzzy Sets & Systems 1 (1978)
[26] Trillas E., Aspects of Vagueness (1984)
[27] DOI: 10.1016/0165-0114(85)90096-X · Zbl 0609.04002
[28] Schweizer B., Probabilistic Metric Spaces (1983) · Zbl 0546.60010
[29] Bezdek J. C., Pattern Recognition with Fuzzy Objective Function Algorithms (1981) · Zbl 0503.68069
[30] López de Maniaras R., IEEE Trans. on Pattern Analysis and Machine Intelligence 10 (1988)
[31] Ovchinnikov S. V., Proc. 2d World Conf. on Mathematics at the Service of Man (1982)
[32] DOI: 10.1016/S0019-9958(76)90446-0 · Zbl 0326.02048
[33] DOI: 10.1016/0022-247X(85)90329-4 · Zbl 0581.04003
[34] DOI: 10.1016/0165-0114(81)90060-9 · Zbl 0468.94021
[35] Nakamura A., Note on Multiple-Valued Logic in Japan 9 (1988)
[36] Orlowski S. A., Kybernetes 6 (1977)
[37] DOI: 10.1016/0020-0255(86)90035-6 · Zbl 0605.03021
[38] Prade H., Fuzzy Set and Possibility Theory Recent Developments pp 232– (1982)
[39] Sugeno M., Fuzzy Automated and Decision Processes (1977)
[40] Novak V., Approximate Reasoning in Intelligent Systems, Decision and Control (1987)
[41] DOI: 10.1016/S0020-7373(86)80001-3
[42] Pearl J., Proc. 6th AAAI National Conf. on Artificial Intelligence (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.