×

On the decay at infinity of solutions of fractional Schrödinger equations. (English) Zbl 1507.35320

Summary: The present article focuses on the unique continuation at infinity for relativistic Schrödinger equations with potentials decreasing to zero at infinity.

MSC:

35R11 Fractional partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
35B60 Continuation and prolongation of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Meshkov, VZ., On the possible rate of decay at infinity of solutions of second order partial differential equations, Math USSR-Sb, 72, 2, 343-361 (1992) · Zbl 0782.35010 · doi:10.1070/SM1992v072n02ABEH001414
[2] Astakhov, AT; Meshkov, VZ., On the possible decay at infinity of solutions of homogeneous elliptic equations, Differ Equ, 50, 11, 1548-1550 (2014) · Zbl 1317.35053 · doi:10.1134/S0012266114110123
[3] Sampedro, JC., Unique continuation at infinity of solutions to Schrödinger equations with complex-valued potentials, Proc Edinburgh Math Soc, 42, 143-153 (1999) · Zbl 0941.35016 · doi:10.1017/S0013091500020071
[4] El Aïdi, M., On a unique continuation for Aharonov Bohm magnetic Schrödinger equation, Forum Math, 29, 6, 1349-1354 (2017) · Zbl 1379.35045 · doi:10.1515/forum-2016-0161
[5] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm Partial Differ Equ, 32, 7-9, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[6] Bucur, C, Valdinoci, E.Nonlocal diffusion and applications. Lecture Notes of the Unione Matematica Italiana 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016 xii+155 pp. · Zbl 1377.35002
[7] Friedman, A., PDE problems arising in mathematical biology, Netw Heterog Media, 7, 4, 691-703 (2012) · Zbl 1260.49001 · doi:10.3934/nhm.2012.7.691
[8] Humphries, NE; Queiroz, N.; Dyer, JR, Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465, 7301, 1066-1069 (2010) · doi:10.1038/nature09116
[9] Reynolds, A.; Rhodes, C., The Lévy flight paradigm: random search patterns and mechanisms, Ecology, 90, 4, 877-887 (2009) · doi:10.1890/08-0153.1
[10] Schoutens, W., Lévy processes in finance: pricing financial derivatives (2003), New York: John Wiley and Sons, Ltd, New York
[11] Viswanathan, GM; Afanasyev, V.; Buldyrev, SV, Lévy flight search patterns of wandering albatrosses, Nature, 381, 6581, 413-415 (1996) · doi:10.1038/381413a0
[12] Woyczyński, WA.Levy processes in the physical sciences. In Lévy processes, pages 241-266. Birkhäuser Boston, Boston, MA, 2001. · Zbl 0982.60043
[13] Rüland, A., Unique continuation for fractional Schrödinger equations with rough potentials, Commun Partial Differ Equ, 40, 1, 77-114 (2015) · Zbl 1316.35292 · doi:10.1080/03605302.2014.905594
[14] Frank, RL; Lenzmann, E., Uniqueness of non-linear ground states for fractional Laplacians in \(####\), Acta Math, 210, 261-318 (2013) · Zbl 1307.35315 · doi:10.1007/s11511-013-0095-9
[15] Frank, RL; Lenzmann, E.; Silvestre, L., Uniqueness of radial solutions for the fractional Laplacian, Comm Pure Appl Math, 69, 99, 1671-172 (2016) · Zbl 1365.35206 · doi:10.1002/cpa.21591
[16] Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Comm Pure Appl Math, 59, 330-343 (2006) · Zbl 1093.45001 · doi:10.1002/cpa.20116
[17] Carmona, R.; Masters, WC; Simon, B., Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J Funct Anal, 91, 117-142 (1990) · Zbl 0716.35006 · doi:10.1016/0022-1236(90)90049-Q
[18] Abatangelo, N, Valdinoci, E.Getting acquainted with the fractional Laplacian, to appear on Springer-INdAM Series, INdAM Intensive Period “Contemporary Research in elliptic PDEs and related topics” (Università degli Studi di Bari, May 2017). · Zbl 1432.35216
[19] Fall, M.; Felli, V., Unique continuation property and local asymptotics of solutions of frac- tional elliptic equations, Commun Partial Differ Equ, 39, 2, 354-397 (2014) · Zbl 1286.35250 · doi:10.1080/03605302.2013.825918
[20] Armstrong, S.; Silvestre, L., Unique continuation for fully nonlinear elliptic equations, Math Res Lett, 18, 921-926 (2011) · Zbl 1241.35060 · doi:10.4310/MRL.2011.v18.n5.a9
[21] Hui, Y., Unique continuation for fractional orders of Elliptic equations, Ann PDE, 3, 2, 22 (2017) · Zbl 1397.35048
[22] Seo, I., Carleman inequalities for fractional Laplacians and unique continuation, Taiwanese J Math, 19, 5, 1533-1540 (2015) · Zbl 1357.35288 · doi:10.11650/tjm.19.2015.5624
[23] Chua, SK., Extension theorems on weighted Sobolev spaces, Indiana Univ Math J, 41, 4, 1027-1076 (1992) · Zbl 0767.46025 · doi:10.1512/iumj.1992.41.41053
[24] Dipierro, S.; Valdinoci, E., A density property for fractional weighted Sobolev spaces, Atti Accad Naz Lincei Rend Lincei Mat Appl, 26, 4, 397-422 (2015) · Zbl 1346.46024 · doi:10.4171/RLM/712
[25] Reed, M.; Simon, B., Methods of modern mathematical physics (1978), New York: Academic Press, New York · Zbl 0401.47001
[26] Froese, R.; Herbest, I.; Hoffman-Ostenhoff, M., \(####\)-Lower bounds to solutions of one-Body Schrödinger equations, Proc Roy Soc Edinburgh Sect A, 95, 1-2, 25-38 (1983) · Zbl 0547.35038 · doi:10.1017/S0308210500015778
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.