×

A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates. (English) Zbl 1480.74209

Summary: In this paper a novel numerical method based on the Moving Kriging (MK) interpolation meshfree method, integrated with a simple higher-order shear deformation plate theory for analysis of static bending, free vibration and buckling of functionally graded (FG) plates is presented. In the proposed technique, the shape functions are built by the Kriging technique which possesses the property of Kronecker delta function which makes it easy to enforce essential boundary conditions. The present formulation is based on a refined simple third-order shear deformation theory (R-STSDT), which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the plate present in the original simple third-order shear deformation theory (STSDT). In this theory, instead of assuming a specific distribution for the displacement field, the theory of elasticity is used for obtaining the kinematics of the plate deformation. We first propose the formulation, and then several numerical examples are provided to show the merits of the proposed approach.

MSC:

74K20 Plates
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. Trans. ASME, 12, 69-77 (1945) · Zbl 0063.06470
[2] Mindlin, R. D., Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. Trans. ASME, 18, 31-38 (1951) · Zbl 0044.40101
[3] Ambartsumian, S. A., On the theory of bending plates, Izv. Otd. Tech. Nauk. AN SSSR, 5, 269-277 (1958)
[4] Reissner, E., On transverse bending of plates including the effects of transverse shear deformation, Int. J. Solids Struct., 25, 495-502 (1975) · Zbl 0303.73053
[5] Levinson, M., An accurate simple theory of statics and dynamics of elastic plates, Mech. Res. Commun., 7, 343-350 (1980) · Zbl 0458.73035
[6] Reddy, J. N., Energy and Variational Methods in Applied Mechanics (1984), John Wiley: John Wiley New York · Zbl 0635.73017
[7] Reddy, J. N., Analysis of functionally graded plates, Int. J. Numer. Meth. Eng., 47, 663-684 (2000) · Zbl 0970.74041
[8] Soldatos, K. P., A transverse shear deformation theory for homogenous monoclinic plates, Acta Mech., 94, 195-220 (1992) · Zbl 0850.73130
[9] Noor, A. K.; Burton, W. S., Assessment on shear deformation theories for multilayered composite plates, Appl. Mech. Rev., 42, 1-13 (1989)
[10] Shi, G., A new simple third-order shear deformation theory of plates, Int. J. Solids Struct., 44, 4399-4417 (2007) · Zbl 1356.74123
[11] Yin, S. H.; Yu, T. T.; Bui, Q. T.; Liu, P.; Hirose, S., Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets, Comput. Struct., 177, 23-38 (2016)
[12] Yin, S. H.; Yu, T. T.; Bui, Q. T.; Zheng, X. J.; Tanaka, S., In-plane material inhomogeneity of functionally graded plates: a higher-order shear deformation plate isogeometric analysis, Compos. Part B Eng., 106, 273-284 (2016)
[13] Bui, Q. T.; Doan, H. D.; Do, V. T.; Hirose, S.; Nguyen, D. D., High frequency modes meshfree analysis of Reissner-Mindlin plates, J. Sci. Adv. Mater. Dev., 1, 400-412 (2016)
[14] Bui, Q. T.; Do, V. T.; Ton, T. H.L.; Doan, H. D.; Tanaka, S.; Pham, T. D.; Nguyen-Van, T.-A.; Yu, T. T.; Hirose, S., On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory, Compos. Part B Eng., 92, 218-241 (2016)
[15] Dai, K. Y.; Liu, G. R.; Lim, K. M.; Han, X.; Du, S. Y., A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates, Comput. Mech., 34, 213-223 (2004) · Zbl 1138.74417
[16] Dai, K. Y.; Liu, G. R.; Han, X.; Lim, K. M., Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method, Comput. Struct., 83, 1487-1502 (2005)
[17] Ferreira, A. J.M.; Batra, R. C.; Roque, C. M.C.; Qian, L. F.; Martins, P. A.L. S., Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method, Compos. Struct., 69, 449-457 (2005)
[18] Ferreira, A. J.M.; Batra, R. C.; Roque, C. M.C.; Qian, L. F.; Jorge, R. M.N., Natural frequencies of functionally graded plates by a meshless method, Compos. Struct., 75, 593-600 (2006)
[19] Zhu, P.; Liew, K. M., Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method, Compos. Struct., 93, 2925-2944 (2011)
[20] Bui, T. Q.; Khosravifard, A.; Zhang, C.h.; Hematiyan, M. R.; Golub, M. V., Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method, Eng. Struct., 47, 90-104 (2013)
[21] Khosravifard, A.; Hematiyan, M. R., A new method for meshless integration in 2D and 3D Galerkin meshfree methods, Eng. Anal. Bound. Elem., 34, 30-40 (2010) · Zbl 1244.74222
[22] Hematiyan, M. R.; Khosravifard, A.; Bui, T. Q., Efficient evaluation of weakly/strongly singular domain integrals in the BEM using a singular nodal integration method, Eng. Anal. Bound. Elem., 37, 691-698 (2013) · Zbl 1297.65176
[23] Hematiyan, M. R.; Khosravifard, A.; Liu, G. R., A background decomposition method for domain integration in weak-form meshfree methods, Comput. Struct., 142, 64-78 (2014)
[24] Zhang, L. W.; Zhu, P.; Liew, K. M., Thermal buckling of functionally graded plates using a local Kriging meshless method, Compos. Struct., 108, 472-492 (2014)
[25] Lei, Z. X.; Zhang, L. W.; Liew, K. M., Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method, Compos. Part B Eng., 84, 211-221 (2016)
[26] Vu, T. V.; Nguyen, N. H.; Khosravifard, A.; Hematiyan, M. R.; Tanaka, S.; Bui, Q. T., A simple FSDT-based meshfree method for analysis of functionally graded plates, Eng. Anal. Bound. Elem., 79, 1-12 (2017) · Zbl 1403.74128
[27] Moradi-Dastjerdi, R.; Payganeh, G. H.; Malek-Mohammadi, H., Free vibration analyses of functionally graded CNT reinforced nanocomposite sandwich plates resting on elastic foundation, J. Solid Mech., 7, 158-172 (2015)
[28] Moradi-Dastjerdi, R.; Malek-Mohammadi, H.; Momeni-Khabisi, H., Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates, ZAMM J. Appl. Math. Mech., 97, 1418-1435 (2017)
[29] Moradi-Dastjerdi, R.; Malek-Mohammadi, H., Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory, J. Sandw. Struct. Mater., 9, 736-769 (2017)
[30] Moradi-Dastjerdi, R.; Malek-Mohammadi, H., Free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by carbon nanotube, Mech. Adv. Compos. Struct., 4, 59-73 (2017)
[31] Reddy, J. N., Analysis of functionally graded plates, Int. J. Numer. Meth. Eng., 684, 663-684 (2000) · Zbl 0970.74041
[32] Castellazzi, G.; Gentilini, C.; Krysl, P.; Elishakoff, I., Static analysis of functionally graded plates using a nodal integrated finite element approach, Compos. Struct., 103, 197-200 (2013)
[33] Singha, M. K.; Prakash, T.; Ganapathi, M., Finite element analysis of functionally graded plates under transverse load, Finite Elem. Anal. Des., 47, 4, 453-460 (2011)
[34] Reddy, J. N.; Chin, C., Thermo mechanic analysis of functionally graded cylinders and plates, J. Therm. Stress., 212, 6, 593-626 (1998)
[35] Senthilnathan, N. R.; Lim, S. P.; Lee, K. H.; Chow, S. T., Buckling of shear-deformable plates, AIAA J., 25, 9, 1268-1271 (1987)
[36] Gu, L., Moving Kriging interpolation and element free Galerkin method, Int. J. Num. Methods Eng., 56, 1-11 (2003) · Zbl 1062.74652
[37] Bui, Q. T.; Nguyen, N. T.; Nguyen-Dang, H., A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems, Int. J. Numer. Meth. Eng., 77, 1371-1395 (2009) · Zbl 1156.74391
[38] Kiendl, J.; Bazilevs, Y.; Hsu, M. C.; Wuchner, R.; Bletzinger, K. U., The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Eng., 37-40, 199 (2010) · Zbl 1231.74482
[39] Yin, S. H.; Jack, S. H.; Yu, T. T.; Bui, Q. T.; Boras, P. A.S., Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates, Comp. Strut., 118, 121-138 (2014)
[40] Lee, Y. Y.; Zhao, X.; Liew, K. M., Thermo elastic analysis of functionally graded plates using the element-free kp-Ritz method, Smart. Mater. Struct., 18, 3, 35007 (2009)
[41] Nguyen-Xuan, H.; Tran, L. V.; Nguyen-Thoi, T.; Vu-Do, H. C., Analysis of functionally graded plates using an edge-based smoothed finite element method, Compos. Struct., 93, 11, 3019-3039 (2011)
[42] Qian, L. F.; Batra, R. C.; Chen, L. M., Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method, Compos. Part B, 35, 685-697 (2004)
[43] Neves, A. M.A.; Ferreira, A. J.M.; Carrera, E.; Roque, C. M.C.; Cinefra, M.; Jorge, R. M.N., A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Compos. Part B Eng., 43, 711-725 (2012)
[44] Neves, A. M.A.; Ferreira, A. J.M.; Carrera, E.; Cinefra, M.; Roque, C. M.C.; Jorge, R. M.N., Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique, Compos. Part B Eng., 44, 657-674 (2013)
[45] Yu, L. H.; Wang, C. Y., Buckling of rectangular plates on an elastic foundation using the Levy method, AIAA J., 46, 3163-3166 (2008)
[46] Mohammadi, M.; Saidi, A.; Jomehzadeh, E., Levy solution for buckling analysis of functionally graded rectangular plates, Appl. Compos. Mater., 17, 81-93 (2010)
[47] Dai, K. Y.; Liu, G. R.; Lim, K. M.; Gu, Y. T., Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods, Comput. Mech., 23, 60-70 (2003) · Zbl 1035.74059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.