×

Two dimensional displacement and stress fields for tri-material V-notches and sharp inclusions in anisotropic plates. (English) Zbl 1473.74050

Summary: The singular behavior for multi-material V-notch notched plates is studied in this paper, considering both isotropic and anisotropic materials. Firstly, by introducing the asymptotic expansions of displacements near the apex of the sharp notch, the elastic governing equations are transformed into eigen ordinary differential equations. The stress singularity orders and eigen angular functions are then obtained solving the established equations by using the interpolating matrix method. Secondly, using in combination the results from proper finite element analyses and the asymptotic analytical solution derived, an over-deterministic method is employed to calculate the amplitudes of the coefficients in the asymptotic expansions of displacements and stresses near the V-notch tip. The efficiency of the proposed method is assessed analyzing several notched specimens made of different materials. The accuracy of the notch stress intensity factors and the displacement and stress fields are evaluated by comparison with results available in the literature, as well as the results obtained from a number of finite element analyses.

MSC:

74G70 Stress concentrations, singularities in solid mechanics
74K20 Plates
74E05 Inhomogeneity in solid mechanics
74E10 Anisotropy in solid mechanics
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abe, M.; Ikeda, T.; Koganemaru, M.; Miyazaki, N., Stress intensity factor analysis of a three-dimensional interfacial corner between anisotropic piezoelectric multi-materials under several boundary conditions on the corner surfaces, Eng. Fract. Mech., 171, 1-21 (2017)
[2] Barroso, A.; Graciani, E.; V Mantič, V.; París, F., A least squares procedure for the evaluation of multiple generalized stress intensity factors at 2D multimaterial corners by BEM, Eng. Anal. Bound. Elem., 36, 458-470 (2012) · Zbl 1245.74091
[3] Barroso, A.; Mantič, V.; París, F., Singularity analysis of anisotropic multimaterial corners, Int. J. Fract., 119, 1-23 (2003)
[4] Barroso, A.; Mantič, V.; París, F., Computing stress singularities in transversely isotropic multimaterial corners by means of explicit expressions of the orthonormalized Stroh-eigenvectors, Eng. Fract. Mech., 76, 250-268 (2009)
[5] Barroso, A.; Vicentini, D.; Mantič, V.; París, F., Determination of Generalized Fracture Toughness in composite multimaterial closed corners with two singular terms - Part I: test proposal and numerical analysis, Eng. Fract. Mech., 89, 1-14 (2012)
[6] Bogy, D. B., Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading, J. Appl. Mech., 35, 460-466 (1968) · Zbl 0187.46201
[7] Bogy, D. B., Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions, J. Appl. Mech., 38, 377-386 (1971)
[8] Carpinteri, A.; Paggi, M., Analytical study of the singularities arising at multi-material interfaces in 2D linear elastic problems, Eng. Fract. Mech., 74, 59-74 (2007)
[9] Carpinteri, A.; Paggi, M.; Pugno, N., Numerical evaluation of generalized stress intensity factors in multi-layered composites, Int. J. Solids Struct., 43, 627-641 (2006) · Zbl 1119.74388
[10] Carraro, P. A.; Novello, E.; Quaresimin, M.; Zappalorto, M., Delamination onset in symmetric cross-ply laminates under static loads: theory, numerics and experiments, Compos. Struct., 176, 420-432 (2017)
[11] Chang, J.; Xu, J. Q., The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface, Int. J. Mech. Sci., 49, 888-897 (2007)
[12] Chang, J. H.; Wu, D. J., Calculation of mixed-mode stress intensity factors for a crack normal to a bimaterial interface using contour integrals, Eng. Fract. Mech., 70, 1675-1695 (2003)
[13] Chaudhuri, R. A.; Yoon, J. Y., Three-dimensional asymptotic mode I/II stress fields at the front of interfacial crack/anticrack discontinuities in trimaterial bonded plates, Compos. Struct., 94, 351-362 (2012)
[14] Chen, C. H.; Wang, C. L.; Kuo, C. C., Solutions for anti-plane problems of a composite material with a crack terminating at the interface, Arch. Appl. Mech., 82, 1233-1250 (2012) · Zbl 1293.74371
[15] Cheng, C. Z.; Niu, Z. R.; Recho, N., Analysis of the stress singularity for a bi-material V-notch by the boundary element method, Appl. Math. Model., 37, 9398-9408 (2013) · Zbl 1449.74100
[16] Dieringer, R.; Becker, W., A new scaled boundary finite element formulation for the computation of singularity orders at cracks and notches in arbitrarily laminated composites, Compos. Struct., 123, 263-270 (2015)
[17] Hein, V. L.; Erdogan, F., Stress singularities in a two-material wedge, Int. J. Fract. Mech., 7, 317-330 (1971)
[18] Hu, X. F.; Shen, Q. S.; Wang, J. N.; Yao, W. A.; Yang, S. T., A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface, Appl. Math. Model., 50, 361-379 (2017) · Zbl 1476.74134
[19] Liu, C. I.; Chue, C. H., On the stress singularity of dissimilar anisotropic wedges and junctions in antiplane shear, Compos. Struct., 73, 432-442 (2006)
[20] Lin, C. B.; Lee, J. L.; Chen, S. C., Magnetoelastic stresses in a three-phase composite cylinder subject to a uniform magnetic induction, Int. J. Eng. Sci., 48, 529-549 (2010) · Zbl 1213.74141
[21] Luangarpa, C.; Koguchi, H., Intensity of singularity in three-material joints under shear loading: two-real singularities and power-logarithmic singularities, Eur. J. Mech. A Solid., 40, 60-68 (2013) · Zbl 1406.74637
[22] Luo, Y. P.; Subbarayan, G., A study of multiple singularities in multi-material wedges and their use in analysis of microelectronic interconnect structures, Eng. Fract. Mech., 74, 416-430 (2007)
[23] Mantič, V.; París, F.; Cañas, F., Stress singularities in 2D orthotropic corners, Int. J. Fract., 83, 67-90 (1997)
[24] Mantič, V.; París, F.; Berger, J., Singularities in 2D anisotropic potential problems in multi-material corners real variable approach, Int. J. Solids Struct., 40, 5197-5218 (2003) · Zbl 1060.74548
[25] Niu, Z. R.; Ge, D. L.; Cheng, C. Z.; Ye, J. Q.; Recho, N., Evaluation of the stress singularities of plane V-notches in bonded dissimilar materials, Appl. Math. Model., 33, 1776-1792 (2009) · Zbl 1168.74314
[26] Ping, X. C.; Chen, M. C.; Zheng, B. B.; Xu, B., An effective numerical analysis of singular stress fields in dissimilar material wedges under thermo-mechanical loads, Eng. Fract. Mech., 106, 22-37 (2013)
[27] Profant, T.; Klusak, J.; Ševeček, O.; Hrstka, M.; Kotoul, M., An energetic criterion for a micro-crack of finite length initiated in orthotropic bi-material notches, Eng. Fract. Mech., 110, 396-409 (2013)
[28] Profant, T.; Ševeček, O.; Kotoul, M., Calculation of K-factor and T-stress for cracks in anisotropic bimaterials, Eng. Fract. Mech., 75, 3707-3726 (2008)
[29] Profant, T.; Ševeček, O.; Kotoul, M.; Vysloužil, T., Dislocation tri-material solution in the analysis of bridged crack in anisotropic bimaterial half-space, Int. J. Fract., 147, 199-217 (2007) · Zbl 1211.74191
[30] Sih, G. C.; Rice, J. R., The bending of plates of dissimilar materials with cracks, J. Appl. Mech., 31, 477-482 (1964)
[31] Song, C. M., Evaluation of power-logarithmic singularities, T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners, Eng. Fract. Mech., 72, 1498-1530 (2005)
[32] Song, C. M.; Tin-Loi, F.; Gao, W., A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges, Eng. Fract. Mech., 77, 2316-2336 (2010)
[33] Stein, N.; Dölling, S.; Chalkiadaki, K.; Becker, W.; Weißgraeber, P., Enhanced XFEM for crack deflection in multi-material joints, Int. J. Fract., 207, 193-210 (2017)
[34] Su, R. K.L.; Sun, H. Y., Numerical solutions of two-dimensional anisotropic crack problems, Int. J. Solids Struct., 40, 4615-4635 (2003) · Zbl 1041.74536
[35] Ting, T. C.T., Stress singularities at the tip of interfaces in polycrystals, (Rossmanith, H.-P., Damage and Failure of Interfaces (1997), Balkema: Balkema Rotterdam), 75-82
[36] Vicentini, D.; Barroso, A.; Justo, J.; Mantič, V.; París, F., Determination of Generalized Fracture Toughness in composite multimaterial closed corners with two singular terms - Part II: experimental results, Eng. Fract. Mech., 89, 15-23 (2012)
[37] Wang, W.; Martakos, G.; Dulieu-Barton, J. M.; Andreasen, J. H.; Thomsen, O. T., Fracture behaviour at tri-material junctions of crack stoppersin sandwich structures, Compos. Struct., 133, 818-833 (2015)
[38] Williams, M. L., The stresses around a fault or crack in dissimilar media, Bull. Seismol. Soc. Am., 49, 199-204 (1959)
[39] Yoon, J. Y.; Chaudhuri, R. A., Three-dimensional asymptotic antiplane shear stress fields at the front of interfacial crack/anticrack type discontinuities in trimaterial bonded plates, Compos. Struct., 93, 1505-1515 (2011)
[40] Zappalorto, M.; Carraro, P. A.; Quaresimin, M., Analytical solution for the three-dimensional stress fields in anisotropic composite bimaterial corners, Compos. Struct., 122, 127-138 (2015)
[41] Zhang, H. W.; Zhong, W. X., Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions, Int. J. Solids Struct., 40, 493-510 (2003) · Zbl 1064.74560
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.