×

Hybrid optimization procedure applied to optimal location finding for piezoelectric actuators and sensors for active vibration control. (English) Zbl 1460.90184

Summary: This paper presents an efficient hybrid optimization approach using a new coupling technique for solving the constrained optimization problems. This methodology is based on genetic algorithm, sequential quadratic programming and particle swarm optimization combined with a projected gradient techniques in order to correct the solutions out of domain and send them to the domain’s border. The established procedures have been successfully tested with some well known mathematical and engineering optimization problems, also the obtained results are compared with the existing approaches. It is clearly demonstrated that the solutions obtained by the proposed approach are superior to those of existing best solutions reported in the literature. The main application of this procedure is the location optimization of piezoelectric sensors and actuators for active control, the vibration of plates with some piezoelectric patches is considered. Optimization criteria ensuring good observability and controllability based on some main eigenmodes and residual ones are considered. Various rectangular piezoelectric actuators and sensors are used and two optimization variables are considered for each piezoelectric device: the location of its center and shape orientation. The applicability and effectiveness of the present methodological approach are demonstrated and the location optimization of multiple sensors and actuators are successfully obtained with some main modes and residual ones. The shape orientation optimization of sensors observing various modes as well as the local optimization of multiple sensors and actuators are numerically investigated. The effect of residual modes and the spillover reduction can be easily analyzed for a large number of modes and multiple actuators and sensors.

MSC:

90C30 Nonlinear programming
90C59 Approximation methods and heuristics in mathematical programming
74F15 Electromagnetic effects in solid mechanics
90C90 Applications of mathematical programming

Software:

NLPQL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fuller, C. R.; Elliott, S. J.; Nelsson, P., Active Control of Vibratoin (1996), Academic Press: Academic Press New York
[2] Yang, S. M.; Jee, Y. J., Optimization of no-collocated sensor/actuator and feedback gain in control systems, J. Smart Mater. Struct., 2, 96-102 (1993)
[3] Belangueran, A.; ned, F. L.; Bernadou, M., Active control of a beam using a piezoelectric element, J. Smart Mater. Struct., 4, 124-166 (1999)
[4] Bruant, I., Positionnement optimal d’actionneurs et de capteurs en contrôle actif des vibrations de structures, application a des poutres équipées d’éléments piézoélectriques (1999), ENS Cachan, France, (Ph.D. Thesis)
[5] Arbel, A., Controllability measures and actuator placement in oscillatory systems, Int. J. Control, 33, 565-574 (1981) · Zbl 0456.93009
[6] Hac, A.; Liu, L., Sensor and actuator location in motion control of flexible structures, J. Sound Vib., 167, 167-239 (1993) · Zbl 0967.74562
[7] Devasia, S.; Mermessi, T.; Paden, B.; Bayo, E., Piezoelectric actuator design for vibration suppression: placement and sizing, J. Guid., 16, 859-864 (1993)
[8] Wang, Q.; Wang, C., A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures, J. Sound Vib., 3, 507-518 (2001)
[9] Dhingra, A.; Lee, B., Multiobjective design of actively controlled structures using a hybrid optimization method, Int. J. Numer. Methods Eng., 38, 3383-3401 (1995) · Zbl 0855.73053
[10] Kondoh, S.; Yatom, C.; Inoue, K., The positioning of sensors and actuators in the vibration control of flexible systems, JSME Int. J., 33, 145-152 (1990)
[11] Bruant, I.; Coffignal, G.; Léné, F.; Vergé, M., A methodology for determination of piezoelectric actuator and sensor location on beam structures, J. Sound Vib., 5, 862-882 (2001)
[12] Bruant, I.; Proslier, L., Improved active control of a functionally graded material beam with piezoelectric patches, J. Vib. Control, 21, 2059-2080 (2014)
[13] Bruant, I.; Proslier, L., Optimal location of piezoelectric actuators for active vibration control of thin axially functionally graded beams, Int. J. Mech. Mater. Design, 12, 173-192 (2015)
[14] Yang, S.; Lee, Y., Optimization of noncollocated sensor/actuator location and feedback gain in control system, J. Smart Mater. Struct., 2, 96-1993 (1993)
[15] Hac, A.; Liu, L., Sensor and actuator location in motion control of flexible structures, J. Sound Vib., 2, 239-261 (1993) · Zbl 0967.74562
[16] Bruant, I.; Proslier, L., Optimal location of actuators and sensors in active vibration control, J. Intell. Mater. Syst. Struct., 16, 197-206 (2005)
[17] Halim, D.; Moheimani, S. O.R., An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate, Mechatronics, 13, 27-47 (2003)
[18] Michalewicz, Z.; Dasgupta, D.; Riche, R. L.; Schoenauer, M., Evolutionary algorithms for constrained engineering problems, Comput. Eng., 3, 851-870 (1996)
[19] Foutsitzi, G. A.; Gogos, C. G.; Hadjigeorgiou, E. P.; Stavroulakis, G. E., Actuator location and voltages optimization for shape control of smart beams using genetic algorithms, Actuators, 2, 111-128 (2013)
[20] Biglar, M.; Gromada, M.; Stachowicz, F.; Trzepiecinski, T., Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm, Acta Mech., 226, 3451-3462 (2015) · Zbl 1323.70083
[21] Kumar, K. R.; Narayanan, S., Active vibration control of beams with optimal placement of piezoelectric sensors/actuator pairs, Smart Mater. Struct., 17 (2008)
[22] Eberhart, R.; Kennedy, J., A new optimizer using particle swarm theory, Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science, 39-43 (1995)
[23] Kennedy, J.; Eberhart, R., Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, 1942-1948 (1995)
[24] Clerc, M.; Kennedy, J., The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6, 58-73 (2002)
[25] Liang, J. J.; Qin, A. K.; Suganthan, P. N.; Baskar, S., Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281-295 (2006)
[26] Chauhan, P.; Deep, K.; Pant, M., Novel inertia weight strategies for particle swarm optimization, Memetic Comput., 5, 229-251 (2013)
[27] Abousleiman, R.; Rawashdeh, O., Electric vehicle modeling and energy-efficient routing using particle swarm optimisation, IET Intell. Transp. Syst., 10, 65-72 (2016)
[28] Schittkowski, K., NLPQL: a fortran-subroutine solving constrained nonlinear programming problems, annals of operations research, Ann. Oper. Res., 5, 485-500 (1985)
[29] Es-sadek, M. Z., Contribution a l’optimisation globale. approche déterministe et stochastique et application (2009), EMI, Université Mohammed V Agdal, Rabat, Maroc, (Ph.D. thesis)
[30] Fletcher, R., Practical Methods of Optimization (1987), John Wiley and Sons · Zbl 0905.65002
[31] Powell, M. J.D., Variable metric methods for constrained optimization, (Bachem, A.; Korte, B.; Grötschel, M., Mathematical Programming The State of the Art (1983), Springer: Springer Berlin, Heidelberg), 288-311 · Zbl 0536.90076
[32] Bruant, I.; Gallimard, L.; Nikoukar, S., Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm, J. Sound Vib., 329, 1615-1635 (2010)
[33] Rijckaert, M.; Martens, X., Comparison of generalized geometric programming algorithms, J. Optim. Theory Appl., 26, 205-241 (1978) · Zbl 0369.90112
[34] Qu, S.; Zhang, K.; Wang, F., A global optimization using linear relaxation for generalized geometric programming, Eur. J. Oper. Res., 190, 345-356 (2008) · Zbl 1146.90073
[35] Cursi, J. S.D.; Ellaia, R.; Bouhadi, M., Global optimization under nonlinear restrictions by using stochastic perturbations of the projected gradient, Front. Glob. Optim., 1, 541-561 (2003) · Zbl 1176.90649
[36] Bouhadi, M., Contribution á l’optimisation globale avec contraintes. approche stochastique. (1997), Université Mohammed V, Faculté des Sciences, Rabat, Maroc, (Ph.D. Thesis)
[37] Rao, S. S., Engineering Optimization: Theory and Practice (1996), John Wiley and Sons: John Wiley and Sons Chichester
[38] Hac, A.; Liu, L., Sensor and actuator location in motion control of flexible structures, J. Sound Vib., 167, 239-261 (1993) · Zbl 0967.74562
[39] Coello, C. A.C., Use of a self-adaptive penalty approach fo rengineering optimization problems, Comput. Ind., 41, 113-127 (2000)
[40] Coello, C. A.C.; Montes, E. M., Constraint handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf., 16, 193-203 (2002)
[41] Hu, X. H.; Eberhart, R. C.; Shi, Y. H., Engineering optimization with particles warm, Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 53-57 (2003)
[42] Hedar, A. R.; Fukushima, M., Derivative - free filter simulated annealing method for constrained continuous global optimization, J. Glob. Optim., 35 (2006) · Zbl 1133.90421
[43] He, Q.; Wang, L., Aneffective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20, 89-99 (2007)
[44] Dimopoulos, G., Mixed-variable engineering optimization based on evolutionary and social metaphors, Comput. Methods Appl. Mech. Eng., 196, 803-817 (2007) · Zbl 1120.74700
[45] Mahdavi, M.; Fesanghary, M.; Damangir, E., An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188, 1567-1579 (2007) · Zbl 1119.65053
[46] Mehta, V. K.; Dasgupta, B., A constrained optimization algorithm based on the simplex search method, Eng. Optim., 5, 537-550 (2012)
[47] Garg, H., Solvings tructural engineering design optimization problems using an artificial bee colony algorithm, J. Ind .Manag. Optim, 3, 777-794 (2014) · Zbl 1292.90212
[48] Garg, H., Ahybrid pso-ga algorithm for constrained optimization problems, Appl. Math. Comput., 274, 292-305 (2016) · Zbl 1410.90197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.