Primes dividing invariants of CM Picard curves. (English) Zbl 07184219

Summary: We give a bound on the primes dividing the denominators of invariants of Picard curves of genus 3 with complex multiplication. Unlike earlier bounds in genus 2 and 3, our bound is based, not on bad reduction of curves, but on a very explicit type of good reduction. This approach simultaneously yields a simplification of the proof and much sharper bounds. In fact, unlike all previous bounds for genus 3, our bound is sharp enough for use in explicit constructions of Picard curves.


14H45 Special algebraic curves and curves of low genus
14K22 Complex multiplication and abelian varieties
11H06 Lattices and convex bodies (number-theoretic aspects)
14G50 Applications to coding theory and cryptography of arithmetic geometry
14H40 Jacobians, Prym varieties
14Q05 Computational aspects of algebraic curves


SageMath; genus3
Full Text: DOI arXiv


[1] Arora, Sonny and Eisentraeger, Kirsten, Constructing Picard curves with complex multiplication using the Chinese Remainder Theorem. To appear in Algorithmic Number Theory Symposium, 13. Open Book Series. Mathematical Sciences Publishers, Berkeley, CA. http://www.math.grinnell.edu/∼paulhusj/ants2018/paper-arora.html.
[2] Balakrishnan, Jennifer S., Ionica, Sorina, Lauter, Kristin, and Vincent, Christelle, Constructing genus-3 hyperelliptic Jacobians with CM. LMS J. Comput. Math.19(2016), suppl. A, 283-300. · Zbl 1404.11085
[3] Belding, Juliana, Bröker, Reinier, Enge, Andreas, and Lauter, Kristin, Computing Hilbert class polynomials. In: Algorithmic number theory. , Springer, Berlin, 2008, pp. 282-295. · Zbl 1205.11139
[4] Bosch, Siegfried, Lütkebohmert, Werner, and Raynaud, Michel, Néron models. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1990.
[5] Bouw, Irene, Cooley, Jenny, Lauter, Kristin, Lorenzo García, Elisa, Manes, Michelle, Newton, Rachel, and Ozman, Ekin, Bad reduction of genus three curves with complex multiplication. In: Women in numbers Europe. , Springer, Cham, 2015, pp. 109-151. · Zbl 1397.11102
[6] Bouyer, Florian and Streng, Marco, Examples of CM curves of genus two defined over the reflex field. LMS J. Comput. Math.18(2015), 1, 507-538. · Zbl 1397.11103
[7] Bruinier, Jan Hendrik and Yang, Tonghai, CM-values of Hilbert modular functions. Invent. Math.163(2006), 2, 229-288. · Zbl 1093.11041
[8] Eisenträger, Kirsten and Lauter, Kristin, A CRT algorithm for constructing genus 2 curves over finite fields. In: Arithmetics, geometry, and coding theory. , Soc. Math. France, Paris, 2010, pp. 161-176. · Zbl 1270.11060
[9] Gaudry, Pierrick, Houtmann, Thomas, Kohel, David, Ritzenthaler, Christophe, and Weng, Annegret, The 2-adic CM method for genus 2 curves with application to cryptography. In: Advances in cryptology—ASIACRYPT 2006. , Springer, Berlin, 2006, pp. 114-129. · Zbl 1172.94576
[10] Goren, Eyal Z. and Lauter, Kristin E., Class invariants for quartic CM fields. Ann. Inst. Fourier (Grenoble)57(2007), 2, 457-480. · Zbl 1172.11018
[11] Goren, Eyal Z. and Lauter, Kristin E., Genus 2 curves with complex multiplication. Int. Math. Res. Not. IMRN2012(2012), 5, 1068-1142. · Zbl 1236.14033
[12] Holzapfel, Rolf-Peter, The ball and some Hilbert problems. , Birkhäuser Verlag, Basel, 1995. · Zbl 0905.14013
[13] Kılıçer, Pınar, Labrande, Hugo, Lercier, Raynald, Ritzenthaler, Christophe, Sijsling, Jeroen, and Streng, Marco, Plane quartics over ℚ with complex multiplication. Acta Arith.185(2018), 127-156. · Zbl 1409.14051
[14] Kılıçer, Pınar, Lauter, Kristin, Lorenzo García, Elisa, Newton, Rachel, Ozman, Ekin, and Streng, Marco, A bound on the primes of bad reduction for CM curves of genus \(3\). arxiv:1609.05826.
[15] Kılıçer, Pınar, Lorenzo García, Elisa, and Streng, Marco, Implementation of the denominator bounds of ‘Primes dividing invariants of CM Picard curves’ and ‘A bound on the primes of bad reduction for CM curves of genus 3’, 2018. https://bitbucket.org/mstreng/picard_primes/src/master/primes_CM_Picard.sage.
[16] Koike, Kenji and Weng, Annegret, Construction of CM Picard curves. Math. Comp.74(2005), 499-518. · Zbl 1049.14014
[17] Lang, Serge, Complex multiplication. , Springer-Verlag, New York, 1983. · Zbl 0536.14029
[18] Lario, Joan-C. and Somoza, Anna, A note on Picard curves of CM-type. arxiv:1611.02582. · Zbl 1440.11100
[19] Lauter, Kristin and Viray, Bianca, An arithmetic intersection formula for denominators of Igusa class polynomials. Amer. J. Math.137(2015), 2, 497-533. · Zbl 1392.11033
[20] Liu, Qing, Algebraic geometry and arithmetic curves. , Oxford University Press, Oxford, 2002. · Zbl 0996.14005
[21] Mumford, David, Prym varieties. I. In: Contributions to analysis (a collection of papers dedicated to Lipman Bers). Academic Press, New York, 1974, pp. 325-350.
[22] Mumford, David, Abelian varieties. , Hindustan Book Agency, New Delhi, 2008.
[23] Ritzenthaler, Christophe and Romagny, Matthieu, On the Prym variety of genus 3 covers of genus 1 curves. Épijournal Geom. Algébrique2(2018), Art. 2, 8 arxiv:1612.07033. · Zbl 1471.14068
[24] Siegel, Carl Ludwig, Lectures on the geometry of numbers. Springer-Verlag, Berlin, 1989. · Zbl 0691.10021
[25] Spallek, Anne-Monika, Kurven vom geschlecht \(2\) und ihre anwendung in public-key-kryptosystemen. PhD thesis, Institut für Experimentelle Mathematik, Universität GH Essen, 1994. · Zbl 0974.11501
[26] Stein, William A., et al., SageMath, the Sage Mathematics Software System (Version 7.4). The SageMath Development Team, 2016. http://www.sagemath.org.
[27] Van Wamelen, Paul, Examples of genus two CM curves defined over the rationals. Math. Comp.68(1999), 225, 307-320. · Zbl 0906.14025
[28] Weng, Annegret, A class of hyperelliptic CM-curves of genus three. J. Ramanujan Math. Soc.16(2001), 4, 339-372. · Zbl 1066.11028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.