×

zbMATH — the first resource for mathematics

Estimation and prediction of the Burr type XII distribution based on record values and inter-record times. (English) Zbl 07184573
Summary: The maximum likelihood and Bayesian approaches for parameter estimations and prediction of future record values have been considered for the two-parameter Burr Type XII distribution based on record values with the number of trials following the record values (inter-record times). Firstly, the Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, the Bayes estimates of the parameters have been developed by using Lindley’s approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. Secondly, the Bayes estimates are obtained with respect to a discrete prior for the first shape parameter and a conjugate prior for other shape parameter. The Bayes and the maximum likelihood estimates are compared in terms of the estimated risk by the Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record arising from the Burr Type XII distribution based on record data. The comparison of the derived predictors is carried out by using Monte Carlo simulations. A real data are analysed for illustration purposes.

MSC:
62F10 Point estimation
62F15 Bayesian inference
Software:
BayesDA; Bolstad
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gulati S, Padgett WJ. Smooth nonparametric estimation of the distribution and density functions from record-breaking data. Commun Stat - Theory Methods. 1994;23:1256-1274. doi: 10.1080/03610929408831319[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0825.62160
[2] Ahmadi J, Doostparast M. Bayesian estimation and prediction for some life distributions based on record values. Statist Pap. 2006;47(3):373-392. doi: 10.1007/s00362-006-0294-y[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1125.62020
[3] Soliman AA, Abd Ellah AH, Sultan KS. Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches. Comput Stat Data Anal. 2006;51:2065-2077. doi: 10.1016/j.csda.2005.12.020[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1157.62366
[4] Nadar M, Papadopoulos A, Kızılaslan F. Statistical analysis for Kumaraswamy’s distribution based on record data. Statist Pap. 2013;54(2):355-369. doi: 10.1007/s00362-012-0432-7[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1364.62054
[5] Wang L, Shi Y. Reliability analysis of a class of exponential distribution under record values. J Comput Appl Math. 2013;239:367-379. doi: 10.1016/j.cam.2012.09.004[Crossref], [Web of Science ®], [Google Scholar] · Zbl 06125310
[6] Arnold BC, Balakrishnan N, Nagaraja HN. Records. New York: Wiley; 1998. [Crossref], [Google Scholar]
[7] Samaniego FJ, Whitaker LR. On estimating popular characteristics from record breaking observations. I. Parametric results. Naval Res Logist Q. 1986;33:531-543. doi: 10.1002/nav.3800330317[Crossref], [Google Scholar] · Zbl 0605.62027
[8] Doostparast M, Balakrishnan N. Optimal sample size for record data and associated cost analysis for exponential distribution. J Statist Comput Simul. 2010;80(12):1389-1401. doi: 10.1080/00949650903150171[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1205.62060
[9] Doostparast M. A note on estimation based on record data. Metrika. 2009;69:69-80. doi: 10.1007/s00184-008-0178-3[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1433.62123
[10] Doostparast M, Balakrishnan N. Optimal record-based statistical procedures for the two-parameter exponential distribution. J Statist Comput Simul. 2011;81(12):2003-2019. doi: 10.1080/00949655.2010.513979[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1431.62211
[11] Doostparast M, Balakrishnan N. Pareto analysis based on records. Statistics. 2013;47(5):1075-1089. doi: 10.1080/02331888.2012.694440[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1440.62158
[12] Doostparast M, Deepak S, Zangoie A. Estimation with the lognormal distribution on the basis of records. J Statist Comput Simul. 2013;83(12):2339-2351. doi: 10.1080/00949655.2012.691973[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1453.62393
[13] Kızılaslan F, Nadar M. Estimation with the generalized exponential distribution based on record values and inter-record times. J Statist Comput Simul. 2013;1:1-2. doi:10.1080/00949655.2013.856910. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[14] Raqab MZ, Ahmadi J, Doostparast M. Statistical inference based on record data from Pareto model. Statistics. 2007;41(2):105-118. doi: 10.1080/02331880601106579[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1117.62022
[15] Burr IW. Cumulative frequency functions. Ann Math Stat. 1942;13:215-232. doi: 10.1214/aoms/1177731607[Crossref], [Google Scholar] · Zbl 0060.29602
[16] Papadopoulos AS. The Burr distribution as a failure model from a Bayesian approach. IEEE Trans Reliab. 1978;27(5):369-371. doi: 10.1109/TR.1978.5220427[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0392.62080
[17] Al-Hussaini EK, Jaheen ZF. Bayesian estimation of the parameters, reliability and failure rate functions of the Burr Type XII failure model. J Statist Comput Simul. 1992;41:31-40. doi: 10.1080/00949659208811389[Taylor & Francis Online], [Google Scholar] · Zbl 0775.62260
[18] Al-Hussaini EK, Jaheen ZF. Bayesian prediction bounds for the Burr Type XII failure model. Commun Stat - Theory Methods. 1995;24(7):1829-1842. doi: 10.1080/03610929508831589[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0937.62571
[19] Ghitany ME, Al-Awadhi S. Maximum likelihood estimation of Burr XII distribution parameters under random censoring. J Appl Stat. 2002;29(7):955-965. doi: 10.1080/0266476022000006667[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1121.62372
[20] Jaheen ZF. Estimation based on generalized order statistics from the Burr model. Commun Stat - Theory Methods. 2005;34(4):785-794. doi: 10.1081/STA-200054408[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1073.62018
[21] Soliman AA. Estimation of parameters of life from progressively censored data using Burr-XII model. IEEE Trans Reliab. 2005;54(1):34-42. doi: 10.1109/TR.2004.842528[Crossref], [Web of Science ®], [Google Scholar]
[22] Nadar M, Papadopoulos A. Bayesian analysis for the Burr Type XII distribution based on record values. Statistica. 2011;71(4):421-435. [Google Scholar]
[23] Lehmann EL, Casella G. Theory of point estimation. 2nd ed.New York: Springer; 1998. [Google Scholar] · Zbl 0916.62017
[24] Lawless JF. Statistical models and methods for lifetime data. 2nd ed.Hoboken, NJ: Wiley; 2003. [Google Scholar] · Zbl 1015.62093
[25] Bolstad WM. Introduction to Bayesian statistics. 2nd ed.Hoboken, NJ: Wiley; 2007. [Crossref], [Google Scholar] · Zbl 1136.62023
[26] Varian HR. A Bayesian approach to real estate assessment. In: Finberg SE, Zellner A, editors. Studies in Bayesian econometrics and statistics in honor of Leonard J. Savege. North Holland: Amesterdam; 1975. p. 195-208. [Google Scholar]
[27] Soland RM. Bayesian analysis of the Weibull process with unknown scale and shape parameters. IEEE Trans Reliab. 1969;18:181-184. doi: 10.1109/TR.1969.5216348[Crossref], [Web of Science ®], [Google Scholar]
[28] Lindley DV. Approximate Bayes method. Trab Estad. 1980;3:281-288. [Google Scholar]
[29] Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed.London: Chapman and Hall; 2003. [Google Scholar] · Zbl 1039.62018
[30] Tierney L. Markov chains for exploring posterior distributions. Ann Stat. 1994;22:1701-62. doi: 10.1214/aos/1176325750[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0829.62080
[31] Chen MH, Shao QM. Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat. 1999;8(1):69-92. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[32] Berger JO. Statistical decision theory and Bayesian analysis. 2nd ed.New York: Springer; 1985. [Crossref], [Google Scholar] · Zbl 0572.62008
[33] Basak P, Balakrishnan N, Maximum likelihood prediction of future record statistic. Mathematical and statistical methods in reliability. In Lindquist BH, Doksum KA, editors. Series on quality, reliability and engineering statistics, Vol. 7. Singapore: World Scientific Publishing; 2003. p. 159-175. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.