zbMATH — the first resource for mathematics

Estimation and prediction of the Kumaraswamy distribution based on record values and inter-record times. (English) Zbl 07184745
Summary: The maximum likelihood and Bayesian approaches for estimating the parameters and the prediction of future record values for the Kumaraswamy distribution has been considered when the lower record values along with the number of observations following the record values (inter-record-times) have been observed. The Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, Bayes estimates of the parameters have been developed by using Lindley’s approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. The Bayes and the maximum likelihood estimates are compared by using the estimated risk through Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record values arising from the Kumaraswamy distribution based on record values with their corresponding inter-record times and only record values. The comparison of the derived predictors are carried out by using Monte Carlo simulations. Real data are analysed for an illustration of the findings.

62F10 Point estimation
62F15 Bayesian inference
Full Text: DOI
[1] Gulati S, Padgett WJ. Smooth nonparametric estimation of the distribution and density functions from record-breaking data. Comm Statist Theory Methods. 1994;23:1256-1274. doi: 10.1080/03610929408831319[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0825.62160
[2] Asgharzadeh A, Fallah A. Estimation and prediction for exponentiated family of distributions based on records. Comm Statist Theory Methods. 2011;40:68-83. doi: 10.1080/03610920903350564[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1208.62083
[3] Dey S, Tanujit D, Salehi M, Ahmadi J. Bayesian inference of generalized exponential distribution based on lower record values. Amer J Math Management Sci. 2013;32:1-18. [Taylor & Francis Online], [Google Scholar]
[4] Raqab MZ, Sultan KS. Generalized exponential records: existence of maximum likelihood estimates and its comparison with transforming based estimates. Metron. 2014;72:65-76. doi: 10.1007/s40300-013-0031-y[Crossref], [Google Scholar] · Zbl 1308.62101
[5] Wang BX, Ye Z-S. Inference on the Weibull distribution based on record values. Comput Statist Data Anal. 2015;83:26-36. doi: 10.1016/j.csda.2014.09.005[Crossref], [Web of Science ®], [Google Scholar] · Zbl 06984121
[6] Ahsanullah M. Record statistics. New York: Nova Science Publishers; 1995. [Google Scholar] · Zbl 0907.62017
[7] Arnold BC, Balakrishnan N, Nagaraja HN. Records. New York: Wiley; 1998. [Crossref], [Google Scholar]
[8] Samaniego FJ, Whitaker LR. On estimating popular characteristics from record breaking observations. I. Parametric results. Naval Res Logist Q. 1986;33:531-543. doi: 10.1002/nav.3800330317[Crossref], [Google Scholar] · Zbl 0605.62027
[9] Doostparast M. A note on estimation based on record data. Metrika. 2009;69:69-80. doi: 10.1007/s00184-008-0178-3[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1433.62123
[10] Doostparast M, Balakrishnan N. Optimal sample size for record data and associated cost analysis for exponential distribution. J Stat Comput Simul. 2010;80(12):1389-1401. doi: 10.1080/00949650903150171[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1205.62060
[11] Doostparast M, Akbari MG, Balakrishnan N. Bayesian analysis for the two-parameter Pareto distribution based on record values and times. J Stat Comput Simul. 2011;81(11):1393-1403. doi: 10.1080/00949655.2010.486762[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1431.62089
[12] Doostparast M, Balakrishnan N. Optimal record-based statistical procedures for the two-parameter exponential distribution. J Stat Comput Simul. 2011;81(12):2003-2019. doi: 10.1080/00949655.2010.513979[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1431.62211
[13] Doostparast M, Balakrishnan N. Pareto analysis based on records. Statistics. 2013;47(5):1075-1089. doi: 10.1080/02331888.2012.694440[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1440.62158
[14] Doostparast M, Deepak S, Zangoie A. Estimation with the lognormal distribution on the basis of records. J Stat Comput Simul. 2013;83(12):2339-2351. doi: 10.1080/00949655.2012.691973[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1453.62393
[15] Kızılaslan F, Nadar M. Estimation with the generalized exponential distribution based on record values and inter-record times. J Stat Comput Simul. 2015;85(5):978-999. doi: 10.1080/00949655.2013.856910[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[16] Nadar M, Kızılaslan F. Estimation and prediction of the Burr type XII distribution based on record values and inter-record times. J Stat Comput Simul. 2015;85(16):3297-3321. doi: 10.1080/00949655.2014.970554[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[17] Ahmadi J, Doostparast M. Bayesian estimation and prediction for some life distributions based on record values. Statist Papers. 2006;47(3):373-392. doi: 10.1007/s00362-006-0294-y[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1125.62020
[18] Soliman AA, Abd Ellah AH, Sultan KS. Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches. Comput Statist Data Anal. 2006;51:2065-2077. doi: 10.1016/j.csda.2005.12.020[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1157.62366
[19] Raqab MZ, Ahmadi J, Doostparast M. Statistical inference based on record data from Pareto model. Statistics. 2007;41(2):105-118. doi: 10.1080/02331880601106579[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1117.62022
[20] Kumaraswamy P. A generalized probability density function for double-bounded random processes. J Hydrol. 1980;46:79-88. doi: 10.1016/0022-1694(80)90036-0[Crossref], [Web of Science ®], [Google Scholar]
[21] Koutsoyiannis D, Xanthopoulos T. On the parametric approach to unit hydrograph identification. Water Resour Manag. 1989;3:107-128. doi: 10.1007/BF00872467[Crossref], [Google Scholar]
[22] Nadarajah S. On the distribution of Kumaraswamy. J Hydrol. 2008;348:568-569. doi: 10.1016/j.jhydrol.2007.09.008[Crossref], [Web of Science ®], [Google Scholar]
[23] Jones MC. Kumaraswamy’s distribution: a beta-type distribution with some tractability advantages. Stat Methodol. 2009;6:70-81. doi: 10.1016/j.stamet.2008.04.001[Crossref], [Google Scholar] · Zbl 1215.60010
[24] Cordeiro GM, Ortega EMM, Nadarajah S. The Kumaraswamy Weibull distribution with application to failure data. J Franklin Inst. 2010;347(8):1399-1429. doi: 10.1016/j.jfranklin.2010.06.010[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1202.62018
[25] Lemonte AJ, Barreto-Souza W, Cordeiro GM. The exponentiated Kumaraswamy distribution and its log-transform. Braz J Probab Stat. 2013;27(1):31-53. doi: 10.1214/11-BJPS149[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1319.62032
[26] Lemonte AJ. Improved point estimation for the Kumaraswamy distribution. J Stat Comput Simul. 2011;81(12):1971-1982. doi: 10.1080/00949655.2010.511621[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1365.62080
[27] Nadar M, Papadopoulos A, Kızılaslan F. Statistical analysis for Kumaraswamy’s distribution based on record data. Statist Papers. 2013;54(2):355-369. doi: 10.1007/s00362-012-0432-7[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1364.62054
[28] Mitnik PA. New properties of the Kumaraswamy distribution. Comm Statist Theory Methods. 2013;42(5): 741-755. doi: 10.1080/03610926.2011.581782[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1269.60015
[29] Barreto-Souza W, Lemonte AJ. Bivariate Kumaraswamy distribution: properties and a new method to generate bivariate classes. Statistics. 2013;47:1321-1342. doi: 10.1080/02331888.2012.694446[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1440.62179
[30] Nadar M, Kızılaslan F. Classical and Bayesian estimation of ##img####img####img##P(X<Y) using upper record values from Kumaraswamy’s distribution. Statist Papers. 2014;55(3):751-783. doi: 10.1007/s00362-013-0526-x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1336.62077
[31] Nadar M, Kızılaslan F, Papadopoulos A. Classical and Bayesian estimation of ##img####img####img##P(Y<X) for Kumaraswamy’s distribution. J Stat Comput Simul. 2014;84(7):1505-1529. doi: 10.1080/00949655.2012.750658[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1453.62694
[32] El-Deen SMM, AL-Dayian GR, EL-Helbawy AA. Statistical inference for Kumaraswamy distribution based on generalized order statistics with applications. British J Math Comput Sci. 2014;4(12):1710-1743. doi: 10.9734/BJMCS/2014/9193[Crossref], [Google Scholar]
[33] Lehmann EL, Casella G. Theory of point estimation. 2nd ed.New York: Springer; 1998. [Google Scholar] · Zbl 0916.62017
[34] Lawless JF. Statistical models and methods for lifetime data. 2nd ed.Hoboken, NJ: Wiley; 2003. [Google Scholar] · Zbl 1015.62093
[35] Varian HR. A Bayesian approach to real estate assessment. In: Finberg SE, Zellner A, editors. Studies in Bayesian econometrics and statistics in honor of Leonard J. Savege. Amesterdam: North Holland; 1975. p. 195-208. [Google Scholar]
[36] Lindley DV. Approximate Bayes method. Trabajos de Estadistica. 1980;3:281-288. [Google Scholar]
[37] Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed.London: Chapman and Hall; 2003. [Google Scholar] · Zbl 1039.62018
[38] Tierney L. Markov chains for exploring posterior distributions. Ann Statist. 1994;22:1701-1728. doi: 10.1214/aos/1176325750[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0829.62080
[39] Chen MH, Shao QM. Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Statist. 1999;8(1):69-92. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[40] Basak P, Balakrishnan N. Maximum likelihood prediction of future record statistic. Mathematical and statistical methods in reliability. In: Lindquist BH, Doksum KA, editors. Series on quality, reliability and engineering statistics, Vol. 7. Singapore: World Scientific Publishing; 2003. p. 159-175. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.