×

Thermophoretic motion of an aerosol sphere in a spherical cavity. (English) Zbl 1472.76108

Summary: A theoretical investigation of the quasi-steady thermophoresis of an aerosol sphere located arbitrarily in a spherical cavity normal to the line of their centers is presented. In the slip-flow regime for the gas motion, the thermal creep, thermal stress slip, frictional slip, and temperature jump are permitted at the solid surfaces. The general solutions to the conservative equations governing the temperature and fluid velocity distributions in the two spherical coordinate systems with respect to the particle and cavity centers are superimposed, and the boundary conditions are satisfied by a collocation technique. The translational and angular velocities of the particle are determined as functions of the scaled center-to-center distance between the particle and cavity (eccentricity of the particle position), their radius ratio, and their relative thermal and surface properties. The results indicate that the boundary effect on the thermophoretic motion is significant, interesting, and complicated. When the particle is located at the cavity center, its migration velocity agrees well with the available analytical solution. In general, the thermophoretic mobility decreases with increases in the particle-to-cavity size ratio and in the normalized distance between the particle and cavity centers, but there exist some exceptions. The circulating cavity-induced thermoosmotic flow can increase or decrease the thermophoretic migration and retard the particle rotation, even reverse their directions, depending on the geometric and characteristic parameters. The boundary effect on the thermophoretic migration normal to the line through the particle and cavity centers is slightly weaker than that along the line.

MSC:

76T15 Dusty-gas two-phase flows
80A19 Diffusive and convective heat and mass transfer, heat flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balsara, N. P.; Subramanian, R. S., The influence of buoyancy on thermophoretic deposition of aerosol particles in a horizontal tube, J. Colloid Interface Sci., 118, 3-14 (1987)
[2] Williams, M. M.R.; Loyalka, S. K., Aerosol Science: Theory and Practice, with Special Applications to the Nuclear Industry (1991), Pergamon Press: Pergamon Press Oxford
[3] Sagot, B., Thermophoresis for spherical particles, J. Aerosol Sci., 65, 10-20 (2013)
[4] Guha, A.; Samanta, S., Effect of thermophoresis and its mathematical models on the transport and deposition of aerosol particles in natural convective flow on vertical and horizontal plates, J. Aerosol Sci., 77, 85-101 (2014)
[5] Wu, Y.-T.; Yang, B.; Zhao, Y.-P., Thermophoresis of aerosol particles in near-critical vapor: An inverse size effect, Appl. Phys. Lett., 106 (2015), 251605-1-5
[6] Bhusnoor, S. S.; Bhandarkar, U. V.; Sethi, V.; Parikh, P. P., Thermophoresis deposition studies for nacl and diesel exhaust particulate matter under laminar flow, J. Aerosol Sci., 105, 84-93 (2017)
[7] Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C., Catalysis-driven self-thermophoresis of janus plasmonic nanomotors, Angew. Chem. Int. Ed., 56, 515-518 (2017)
[8] Maxwell, J. C., On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc., 170, 231-256 (1879) · JFM 11.0777.01
[9] Brock, J. R., On the theory of thermal forces acting on aerosol particles, J. Colloid Sci., 17, 768-780 (1962)
[10] Lockerby, D. A.; Reese, J. M.; Emerson, D. R.; Barber, R. W., Velocity boundary condition at solid walls in rarefied gas calculations, Phys. Rev. E, 70 (2004), 017303-1-4
[11] Young, J. B., Thermophoresis of a spherical particle: Reassessment, clarification, and new analysis, Aerosol Sci. Technol., 45, 927-948 (2011)
[12] Chang, Y. C.; Keh, H. J., Thermophoresis at small but finite Péclet numbers, Aerosol Sci. Technol., 52, 1028-1036 (2018)
[13] Chang, Y. C.; Keh, H. J., Effects of thermal stress slip on thermophoresis and photophoresis, J. Aerosol Sci., 50, 1-10 (2012)
[14] Saad, E. I.; Faltas, M. S., Theory of thermophoresis of a spherical particle embedded in a micropolar fluid, J. Mol. Liq., 282, 527-544 (2019)
[15] Talbot, L.; Cheng, R. K.; Schefer, R. W.; Willis, D. R., Thermophoresis of particles in heated boundary layer, J. Fluid Mech., 101, 737-758 (1980)
[16] Bakanov, S. P., The nature of thermophoresis of highly heat-conducting bodies in gases, J. Appl. Math. Mech., 68, 25-28 (2004) · Zbl 1108.76062
[17] Li, W. K.; Soong, C. Y.; Liu, C. H.; Tzeng, P. Y., Thermophoresis of a micro-particle in gaseous media with effect of thermal stress slip, Aerosol Sci. Technol., 44, 1077-1082 (2010)
[18] Allen, M. D.; Raabe, O. G., Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus, Aerosol Sci. Technol., 4, 269-286 (1985)
[19] Davis, E. J., Thermophoresis of particles, (Encyclopedia of Surface and Colloid Science (2006), Dekker: Dekker New York), 6274-6282
[20] Groot, R. D.; Warren, P. B., Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys., 107, 4423-4435 (1997)
[21] Kannan, A. S.; Naserentin, V.; Mark, A.; Maggiolo, D.; Sardina, G.; Sasic, S.; Ström, H., A continuum-based multiphase DNS method for studying the brownian dynamics of soot particles in a rarefied gas, Chem. Eng. Sci., 210 (2019), 115229-1-15
[22] Reed, L. D.; Morrison, F. A., Particle interactions in viscous flow at small values of Knudsen number, J. Aerosol Sci., 5, 175-189 (1974)
[23] Ying, R.; Peters, M. H., Hydrodynamic interaction of two unequal-sized spheres in a slightly rarefied gas: resistance and mobility functions, J. Fluid Mech., 207, 353-378 (1989) · Zbl 0687.76079
[24] Keh, H. J.; Chen, S. H., Low-reynolds-number hydrodynamic interactions in a suspension of spherical particles with slip surfaces, Chem. Eng. Sci., 52, 1789-1805 (1997)
[25] Keh, H. J.; Ho, N. Y., Concentration effects on the thermophoresis of aerosol spheres, J. Colloid Interface Sci., 216, 167-178 (1999)
[26] Reed, L. D.; Morrison, F. A., Particle interactions in low Knudsen number thermophoresis, J. Aerosol Sci., 6, 349-365 (1975)
[27] Chen, S. H.; Keh, H. J., Axisymmetric thermophoretic motion of two spheres, J. Aerosol Sci., 26, 429-444 (1995)
[28] Keh, H. J.; Chen, S. H., Particle interactions in thermophoresis, Chem. Eng. Sci., 50, 3395-3407 (1995)
[29] Keh, H. J.; Chen, S. H., Thermophoresis of an arbitrary three-dimensional array of n interacting arbitrary spheres, J. Aerosol Sci., 27, 1035-1061 (1996)
[30] Keh, H. J.; Chang, Y. C., Thermophoresis of an aerosol sphere perpendicular to two plane walls, AIChE J., 52, 1690-1704 (2006)
[31] Keh, H. J.; Chen, P. Y., Thermophoresis of an aerosol sphere parallel to one or two plane walls, AIChE J., 49, 2283-2299 (2003)
[32] Lu, S. Y.; Lee, C. T., Thermophoretic motion of a spherical aerosol particle in a cylindrical pore, Aerosol Sci. Technol., 37, 455-459 (2003)
[33] Li, C. Y.; Keh, H. J., Thermophoresis of a spherical particle in a microtube, J. Aerosol Sci., 113, 71-84 (2017)
[34] Keh, H. J.; Chang, J. H., Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity, Chem Eng. Sci., 53, 2365-2377 (1998)
[35] Lu, S. Y.; Lee, C. T., Thermophoretic motion of an aerosol particle in a non-concentric pore, J. Aerosol Sci., 32, 1341-1358 (2001)
[36] Li, C. Y.; Keh, H. J., Thermophoresis of a particle in a concentric cavity with thermal stress slip, Aerosol Sci. Technol., 52, 269-276 (2018)
[37] El-Sapa, S., Effect of permeability of brinkman flow on thermophoresis of a particle in a spherical cavity, Eur. J. Mech. B Fluids, 79, 315-323 (2020) · Zbl 1477.76089
[38] Li, C. Y.; Keh, H. J., Axisymmetric thermophoresis of an aerosol particle in a spherical cavity, J. Aerosol Sci., 135, 33-45 (2019)
[39] Lee, T. C.; Keh, H. J., Thermocapillary motion of a spherical drop in a spherical cavity, Comput. Model. Eng. Sci., 93, 317-333 (2013) · Zbl 1356.76057
[40] Lee, T. C.; Keh, H. J., Slow motion of a spherical particle in a spherical cavity with slip surfaces, Internat. J. Engrg. Sci., 69, 1-15 (2013) · Zbl 1423.76110
[41] Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics (1983), Nijhoff: Nijhoff Dordrecht, Netherlands
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.