×

Heat transfer enhancement with nanofluids in plate heat exchangers: a comprehensive review. (English) Zbl 1479.76108

Summary: The application of nanofluids has dramatically increased from the past two decades. Nanofluids have elegantly captivated the attention of researchers nowadays. At present, various papers are being reported dealing with this interesting domain, allied with fascinating applications. However, the nanofluids being captives these days depicts the crucial need to bestow the comprehensive review of nanofluids application in distinct domains. This paper examines the utilization of nanofluids with distinct Plate Heat Exchanger (PHE) geometries. All the reported studies are alienated to two main categories; experimental and numerical. Furthermore, critical information regarding nanoparticle size, base fluids, analytical methods, heat transfer enhancement, flow regime, and pressure drop is presented in a comprehensive table in each section. Also, it was ultimately found that all the studies; analytical, experimental and numerical gave desired and appreciable thermal performance compared to conventional fluids. Author also reported the statistical analysis for the past published papers and the results show the increasing importance of nanofluids application in plate heat exchanger. Most of the studies showed preferred thermal behaviour, heat transfer enhancement, reduction in entropy generation and reduction in exergy destruction compared to the base fluids. An increase in Reynolds number can provide better heat transfer rates. The operating temperature of nanofluids plays a key role in the effectiveness of heat exchanger and heat transfer enhancement. Almost all the studies have demonstrated the preferred nanofluids thermal behaviour in plate heat exchanger, compared to the base fluid but Chevron and Corrugated type geometry of plate heat exchanger gives the appreciable enhancement in Nusselt number.

MSC:

76T20 Suspensions
76R10 Free convection
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Maxwell, J. C., A treatise on electricity and magnetism Part IV, (A Treatise on Electricity and Magnetism (1873)) · JFM 05.0556.01
[2] Hamilton, R. L., Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam. (1962)
[3] Choi, S. S.; Eastman, A. A., Enhancing thermal conductiivity of fluids with nanoparticles, (International Mechanical Engineering Congress and Exhibition. International Mechanical Engineering Congress and Exhibition, San Francisco, CA (United States), 12-17 Nov 1995 (1995), ASME Puplications FED)
[4] Ghasemi, S. E.; Vatani, M.; Hatami, M.; Ganji, D. D., Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems, J. Mol. Liq., 215, 88-97 (2016)
[5] Abbas, M. A.; Bai, Y. Q.; Rashidi, M. M.; Bhatti, M. M., Application of drug delivery in magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel, J. Mech. Med. Biol., 16, 04, Article 1650052 pp. (2016)
[6] Leong, K. Y.; Saidur, R.; Kazi, S. N.; Mamun, A. H., Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Appl. Therm. Eng., 30, 17, 2685-2692 (2010)
[7] Kakav, H.; Molana, M., A numerical study of heat transfer charcteristics of a car radiator involved nanofluids, Heat Transfer - Asian Res. (2017)
[8] Molana, M., On the nanofluids application in the automotive radiator to reach the enhanced thermal performance: A review, Am. J. Heat Mass Transf., 4, 4, 168-187 (2017)
[9] Kumar, V.; Pandya, N.; Pandya, B.; Joshi, A., Synthesis of metal-based nanofluids and their thermo-hydraulic performance in compact heat exchanger with multi-louvered fins working under laminar conditions, J. Therm. Anal. Calorim. (2019)
[10] Buongiorno, J.; Hu, L.-W.; Kim, S. J.; Hannink, R.; Truong, B. A.O.; Forrest, E., Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps, Nucl. Technol., 162, 1, 80-91 (2008)
[11] Buongiorno, J.; Hu, L. W.; Apostolakis, G.; Hannink, R.; Lucas, T.; Chupin, A., A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors, Nucl. Eng. Des., 239, 5, 941-948 (2009)
[12] Nam, J. S.; Lee, P. H.; Lee, S. W., Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication, Int. J. Mach. Tools Manuf. (2011)
[13] Ahmadi, H.; Rashidi, A.; Nouralishahi, A.; Mohtasebi, S. S., Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant, Int. Commun. Heat Mass Transf., 46, 142-147 (2013)
[14] Molana, M.; Banooni, S., Investigation of heat transfer processes involved liquid impingement jets: A review, Braz. J. Chem. Eng., 30, 3 (2013)
[15] Wongcharee, K.; Chuwattanakul, V.; Eiamsa-ard, S., Influence of CuO/water nanofluid concentration and swirling flow on jet impingement cooling, Int. Commun. Heat Mass Transf., 88, 277-283 (2017)
[16] Li, Q.; Xuan, Y.; Yu, F., Experimental investigation of submerged single jet impingement using Cu-water nanofluid, Appl. Therm. Eng., 36, 426-433 (2012)
[17] Chamkha, A. J.; Molana, M.; Rahnama, A.; Ghadami, F., On the nanofluids applications in microchannels: A comprehensive review, Powder Technol. (2018)
[18] Nitiapiruk, P.; Mahian, O.; Dalkilic, A. S.; Wongwises, S., Performance characteristics of a microchannel heat sink using TiO_2/water nanofluid and different thermophysical models, Int. Commun. Heat Mass Transf., 47, 98-104 (2013)
[19] Tafarroj, M. M.; Mahian, O.; Kasaeian, A.; Sakamatapan, K.; Dalkilic, A. S.; Wongwises, S., Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data, Int. Commun. Heat Mass Transf., 86, August, 25-31 (2017)
[20] Nguyen, C. T.; Roy, G.; Gauthier, C.; Galanis, N., Heat transfer enhancement using Al_2O_3-water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng. (2007)
[21] Ijam, A.; Saidur, R., Nanofluid as a coolant for electronic devices (cooling of electronic devices), Appl. Therm. Eng. (2012)
[22] Wang, X.; He, Y.; Liu, X.; Shi, L.; Zhu, J., Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation, Sol. Energy, 157, 35-46 (2017)
[23] Sui, D.; Langåker, V. H.; Yu, Z., Investigation of thermophysical properties of nanofluids for application in geothermal energy, Energy Procedia, 105, 5055-5060 (2017)
[24] Nasrin, R.; Alim, M. A.; Chamkha, A. J., Effects of physical parameters on natural convection in a solar collector filled with nanofluid, Heat Transfer Res., 42, 1, 73-88 (2013)
[25] Nithyadevi, N.; Nithyadevi, N.; Gayathri, P.; Gayathri, P.; Chamkha, A.; Chamkha, A., Three dimensional MHD stagnation point flow of Al-Cu alloy suspended water based nanofluid with second order slip and convective heating, Internat. J. Numer. Methods Heat Fluid Flow, 27, 12, 2879-2901 (2017)
[26] Molana, M., A comprehensive review on the nanofluids application in the tubular heat exchangers, Am. J. Heat Mass Transf., 3, 5 (2016)
[27] Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B., Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity, Physica A, 470, 20-38 (2017) · Zbl 1400.76076
[28] Izadi, S.; Armaghani, T.; Ghasemiasl, R.; Chamkha, A. J.; Molana, M., A comprehensive review on mixed convection of nanofluids in various shapes of enclosures, Powder Technol. (2018)
[29] Sabet Sarvestany, N.; Farzad, A.; Ebrahimnia-Bajestan, E.; Mir, M., Effects of magnetic nanofluid fuel combustion on the performance and emission characteristics, J. Dispers. Sci. Technol., 35, 12, 1745-1750 (2014)
[30] Basu, S.; Miglani, A., Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review, Int. J. Heat Mass Transfer, 96, 482-503 (2016)
[31] Bharadwaj, G.; Sharma, K.; Kumar, A., Materials today: Proceedings performance analysis of hybrid PCM by doping graphene, Mater. Today: Proc., xxxx, 1-4 (2020)
[32] Chamkha, A. J., Hydromagnetic two-phase flow in a channel, Internat. J. Engrg. Sci., 33, 3, 437-446 (1995) · Zbl 0899.76359
[33] Ghasemiasl, R.; Taheri, M. A.; Molana, M.; Raoufi, N., Experimental investigation of thermal performance of the graphene oxide-coated plates, Heat Transfer - Asian Res. (2020)
[34] Gupta, N. K.; Tiwari, A. K.; Ghosh, S. K., Experimental study of thermal performance of nanofluid-filled and nanoparticles-coated mesh wick heat pipes, J. Heat Transf. (2018)
[35] Maddah, H.; Aghayari, R.; Mirzaee, M.; Ahmadi, M. H.; Sadeghzadeh, M.; Chamkha, A. J., Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al_2O_3TiO_2 hybrid nanofluid, Int. Commun. Heat Mass Transf., 97, 92-102 (2018)
[36] Molana, M.; Zarrinderafsh, V.; Chamkha, A. J.; Izadi, S.; Rafizadeh, S., Magnetohydrodynamics convection in nanofluids-filled cavities: A review, Heat Transfer - Asian Res. (2020)
[37] Reddy, P. S.; Chamkha, A. J., Soret and Dufour effects on MHD convective flow of Al_2O_3-water and TiO_2-water nanofluids past a stretching sheet in porous media with heat generation/absorption, Adv. Powder Technol., 27, 4, 1207-1218 (2016)
[38] Tlili, I.; Bhatti, M. M.; Hamad, S. M.; Barzinjy, A. A.; Sheikholeslami, M.; Shafee, A., Macroscopic modeling for convection of hybrid nanofluid with magnetic effects, Physica A (2019) · Zbl 07570663
[39] Verma, S. K.; Tiwari, A. K., Characterization of nanofluids as an advanced heat transporting medium for energy systems, Mater. Today: Proc. (2017)
[40] Verma, S. K.; Tiwari, A. K.; Tripathi, M., An evaluative observation on impact of optical properties of nanofluids in performance of photo-thermal concentrating systems, Sol. Energy (2018)
[41] Chamkha, A. J., Unsteady laminar hydromagnetic flow and heat transfer in porous channels with temperature-dependent properties, Internat. J. Numer. Methods Heat Fluid Flow, 11, 5-6, 430-448 (2001) · Zbl 1006.76564
[42] Chamkha, A. J., Flow of two-immiscible fluids in porous and nonporous channels, Trans. ASME, J. Fluids Eng., 122, 1, 117-124 (2000)
[43] Chamkha, A. J., Non-darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects, Numer. Heat Transfer A, 32, 6, 653-675 (1997)
[44] Umavathi, J. C.; Chamkha, A. J.; Mateen, A.; Al-Mudhaf, A., Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel, Nonlinear Anal. Model. Control, 14, 3, 397-415 (2009) · Zbl 1300.76029
[45] Kumar Sharma, A.; Kumar Tiwari, A.; Rai Dixit, A.; Kumar Singh, R., Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid, Meas. J. Int. Meas. Confed., 150, Article 107078 pp. (2020)
[46] Sharma, A. K.; Tiwari, A. K.; Dixit, A. R., Characterization of TiO_2, Al_2O_3 and SiO_2 nanoparticle based cutting fluids, Mater. Today: Proc. (2016)
[47] Li, Z.; Sheikholeslami, M.; Jafaryar, M.; Shafee, A.; Chamkha, A. J., Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes, J. Mol. Liq., 266, 797-805 (2018)
[48] Chamkha, Ali J., Unsteady flow of a dusty conducting fluid through a pipe, Mechanics Research Communications, 21, 3, 281-288 (1994) · Zbl 0800.76541
[49] Sharma, S.; Tiwari, A. K.; Tiwari, S.; Prakash, R., Viscosity of hybrid nanofluids: Measurement and comparison, J. Mech. Eng. Sci. (2018)
[50] Umavathi, J. C.; Chamkha, A. J.; Sridhar, K. S.R., Generalized plain couette flow and heat transfer in a composite channel, Transp. Porous Media, 85, 1, 157-169 (2010)
[51] Verma, S. K.; Tiwari, A. K., Application of nanoparticles in solar collectors: A review, Mater. Today: Proc. (2015)
[52] Banooni, S.; Zarea, H.; Molana, M., Thermodynamic and economic optimization of plate fin heat exchangers using the bees algorithm, Heat Transfer - Asian Res. (2014)
[53] Chamkha, A. J., Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes, Int. J. Heat Fluid Flow, 21, 6, 740-746 (2000)
[54] Chamkha, A. J., On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions, Int. J. Heat Mass Transfer, 45, 12, 2509-2525 (2002) · Zbl 1101.76387
[55] Chamkha, A. J.; Al-Subaie, M. A., Hydromagnetic buoyancy-induced flow of a particulate suspension through a vertical pipe with heat generation or absorption effects, Turk. J. Eng. Environ. Sci., 33, 2, 127-134 (2009)
[56] Gupta, N. K.; Mishra, S.; Tiwari, A. K.; Ghosh, S. K., A review of thermo physical properties of nanofluids, Mater. Today: Proc., 18, 968-978 (2019)
[57] Kumar, J. P.; Umavathi, J. C.; Chamkha, A. J.; Pop, I., Fully-developed free-convective flow of micropolar and viscous fluids in a vertical channel, Appl. Math. Model., 34, 5, 1175-1186 (2010) · Zbl 1186.76615
[58] Menni, Y.; Chamkha, A. J.; Azzi, A.; Zidani, C.; Benyoucef, B., Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers, Math. Model. Eng. Probl., 6, 1, 77-84 (2019)
[59] Sakhri, N., Study of heat and mass transfer through an earth to air heat exchanger equipped with fan in south west of Algeria, Int. J. Heat Technol., 37, 3, 689-695 (2019)
[60] (Lieke) Wang, L.; Sundén, B.; Manglik, R. M., Plate Heat Exchangers: Design, Applications and Performance (2007)
[61] Tiwari, A. K.; Ghosh, P.; Sarkar, J., Heat transfer and pressure drop characteristics of CeO_2/water nanofluid in plate heat exchanger, Appl. Therm. Eng., 57, 1-2, 24-32 (2013)
[62] Tiwari, A. K.; Ghosh, P.; Sarkar, J., Performance comparison of the plate heat exchanger using different nanofluids, Exp. Therm. Fluid Sci., 49, 141-151 (2013)
[63] Maré, T.; Halelfadl, S.; Sow, O.; Estellé, P.; Duret, S.; Bazantay, F., Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger, Exp. Therm. Fluid Sci., 35, 8, 1535-1543 (2011)
[64] Pandey, S. D.; Nema, V. K., Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Exp. Therm. Fluid Sci., 38, 248-256 (2012)
[65] Huang, D.; Wu, Z.; Sunden, B., Effects of hybrid nanofluid mixture in plate heat exchangers, Exp. Therm. Fluid Sci., 72, 190-196 (2016)
[66] Kabeel, A. E.; Abou El Maaty, T.; El Samadony, Y., The effect of using nano-particles on corrugated plate heat exchanger performance, Appl. Therm. Eng., 52, 1, 221-229 (2013)
[67] Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A., Experimental analysis of thermal-hydraulic performance of copper-water nanofluid flow in different plate-fin channels, Exp. Therm. Fluid Sci., 52, 248-258 (2014)
[68] Zamzamian, A.; Oskouie, S. N.; Doosthoseini, A.; Joneidi, A.; Pazouki, M., Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al_2/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow, Exp. Therm. Fluid Sci., 35, 3, 495-502 (2011)
[69] Pantzali, M. N.; Mouza, A. A.; Paras, S. V., Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE), Chem. Eng. Sci., 64, 14, 3290-3300 (2009)
[70] Boudouh, M.; Gualous, H. L.; De Labachelerie, M., Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels, Appl. Therm. Eng., 30, 17-18, 2619-2631 (2010)
[71] Suresh, S.; Venkitaraj, K. P.; Selvakumar, P.; Chandrasekar, M., Effect of Al_2O_3Cu/water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci., 38, 54-60 (2012)
[72] Huang, D.; Wu, Z.; Sunden, B., Pressure drop and convective heat transfer of Al_2O_3/water and MWCNT/water nanofluids in a chevron plate heat exchanger, Int. J. Heat Mass Transfer, 89, 620-626 (2015)
[73] Tiwari, A. K.; Ghosh, P.; Sarkar, J., Particle concentration levels of various nanofluids in plate heat exchanger for best performance, Int. J. Heat Mass Transfer, 89, 1110-1118 (2015)
[74] Pourhoseini, S. H.; Naghizadeh, N.; Hoseinzadeh, H., Effect of silver-water nanofluid on heat transfer performance of a plate heat exchanger: An experimental and theoretical study, Powder Technol., 332, 279-286 (2018)
[75] Barzegarian, R.; Moraveji, M. K.; Aloueyan, A., Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO_2-water nanofluid, Exp. Therm. Fluid Sci., 74, 11-18 (2016)
[76] Bhattad, A.; Sarkar, J.; Ghosh, P., Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger, Int. Commun. Heat Mass Transf., 91, 262-273 (2018)
[77] Kumar, V.; Tiwari, A. K.; Ghosh, S. K., Effect of variable spacing on performance of plate heat exchanger using nanofluids, Energy, 114, 1107-1119 (2016)
[78] Ray, D. R.; Das, D. K.; Vajjha, R. S., Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger, Int. J. Heat Mass Transfer, 71, 732-746 (2014)
[79] Wang, Z.; Wu, Z.; Han, F.; Wadsö, L.; Sundén, B., Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger, Int. J. Therm. Sci., 130, February, 148-156 (2018)
[80] Sarafraz, M. M.; Nikkhah, V.; Madani, S. A.; Jafarian, M.; Hormozi, F., Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid, Appl. Therm. Eng., 121, 388-399 (2017)
[81] Pourhoseini, S. H.; Naghizadeh, N., An experimental study on optimum concentration of silver-water microfluid for enhancing heat transfer performance of a plate heat exchanger, J. Taiwan Inst. Chem. Eng., 75, 220-227 (2017)
[82] Taghizadeh-Tabari, Z.; Zeinali Heris, S.; Moradi, M.; Kahani, M., The study on application of TiO_2/water nanofluid in plate heat exchanger of milk pasteurization industries, Renew. Sustain. Energy Rev., 58, 1318-1326 (2016)
[83] Behrangzade, A.; Heyhat, M. M., The effect of using nano-silver dispersed water based nanofluid as a passive method for energy efficiency enhancement in a plate heat exchanger, Appl. Therm. Eng., 102, 311-317 (2016)
[84] Teng, T. P.; Hsiao, T. C.; Chung, C. C., Characteristics of carbon-based nanofluids and their application in a brazed plate heat exchanger under laminar flow, Appl. Therm. Eng., 146, 160-168 (2019)
[85] Khoshvaght-Aliabadi, M.; Jafari, A.; Sartipzadeh, O.; Salami, M., Thermal-hydraulic performance of wavy plate-fin heat exchanger using passive techniques: Perforations, winglets, and nanofluids, Int. Commun. Heat Mass Transf., 78, 231-240 (2016)
[86] Kumar, V.; Tiwari, A. K.; Ghosh, S. K., Effect of chevron angle on heat transfer performance in plate heat exchanger using ZnO/water nanofluid, Energy Convers. Manage., 118, 142-154 (2016)
[87] Sun, B.; Peng, C.; Zuo, R.; Yang, D.; Li, H., Investigation on the Flow and Convective Heat Transfer Characteristics of Nanofluids in the Plate Heat Exchanger, Vol. 76 (2016), Elsevier Inc.
[88] Tabari, Z. T.; Heris, S. Z., Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid, J. Dispers. Sci. Technol., 36, 2, 196-204 (2015)
[89] Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A., Effects of geometrical parameters on performance of plate-fin heat exchanger: Vortex-generator as core surface and nanofluid as working media, Appl. Therm. Eng., 70, 1, 565-579 (2014)
[90] Elias, M. M.; Rahman, S.; Rahim, N. A.; Sohel, M. R.; Mahbubul, I. M., Performance investigation of a plate heat exchanger using nanofluid with different Chevron angle, Adv. Mater. Res., 832, 254-259 (2013)
[91] Kwon, Y. H., Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger, J. Nanosci. Nanotechnol., 11, 7, 5769-5774 (2011)
[92] Khoshvaght-Aliabadi, M.; Zamzamian, A.; Hormozi, F., Wavy channel and different nanofluids effects on performance of plate-fin heat exchangers, J. Thermophys. Heat Transf., 28, 3, 474-484 (2014)
[93] Pantzali, M. N.; Kanaris, A. G.; Antoniadis, K. D.; Mouza, A. A.; Paras, S. V., Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat Fluid Flow (2009)
[94] Fard, M. H.; Talaie, M. R.; Nasr, S., Numerical and experimental investigation of heat transfer of ZnO/water nanofluid in the concentric tube and plate heat exchangers, Therm. Sci., 15, 1, 183-194 (2011)
[95] Unverdi, M.; Islamoglu, Y., Characteristics of heat transfer and pressure drop in a chevron-type plate heat exchanger with Al_2O_3-water nanofluids, Therm. Sci., 21, 6, 2379-2391 (2017)
[96] Cieśliński, J. T.; Fiuk, A.; Miciak, W.; Siemieńczuk, B., Performance of a plate heat exchanger operated with water-\(Al{}_2 O{}_3\) nanofluid, Appl. Mech. Mater., 831, 188-197 (2016)
[97] Bhattad, A.; Sarkar, J.; Ghosh, P., Energetic and exergetic performances of plate heat exchanger using brine-based hybrid nanofluid for milk chilling application, Heat Transf. Eng., 7632 (2019)
[98] Suresh, S.; Venkitaraj, K. P.; Hameed, M. S.; Sarangan, J., Turbulent heat transfer and pressure drop characteristics of dilute water based Al_2O_3 -Cu hybrid nanofluids, J. Nanosci. Nanotechnol., 14, 3, 2563-2572 (2014)
[99] Khoshvaght-Aliabadi, M.; Ariana, H.; Khaligh, S. F.; Salami, M., Effects of delta winglets on performance of wavy plate-fin in PFHEs: Nanofluid as heat transfer media, J. Therm. Anal. Calorim., 131, 2, 1625-1640 (2018)
[100] Kumar, V.; Tiwari, A. K.; Ghosh, S. K., Characterization and performance of nanofluids in plate heat exchanger, Mater. Today: Proc., 4, 2, 4070-4078 (2017)
[101] Mehrali, M., Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids, Exp. Therm. Fluid Sci., 68, 100-108 (2015)
[102] Tiwari, A. K.; Ghosh, P.; Sarkar, J.; Dahiya, H.; Parekh, J., Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids, Int. J. Therm. Sci., 85, 93-103 (2014)
[103] Goodarzi, M., Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids, Int. Commun. Heat Mass Transf., 66, 172-179 (2015)
[104] Heidary, H.; Kermani, M. J., Effect of nano-particles on forced convection in sinusoidal-wall channel, Int. Commun. Heat Mass Transf., 37, 10, 1520-1527 (2010)
[105] Ahmed, M. A.; Shuaib, N. H.; Yusoff, M. Z.; Al-Falahi, A. H., Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid, Int. Commun. Heat Mass Transf., 38, 10, 1368-1375 (2011)
[106] Sheikholeslami, M.; Ganji, D. D., Heat transfer of Cu-water nanofluid flow between parallel plates, Powder Technol., 235, 873-879 (2013)
[107] Santra, A. K.; Sen, S.; Chakraborty, N., Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci., 48, 2, 391-400 (2009)
[108] Khairul, M. A.; Alim, M. A.; Mahbubul, I. M.; Saidur, R.; Hepbasli, A.; Hossain, A., Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids, Int. Commun. Heat Mass Transf., 50, 8-14 (2014)
[109] Abed, A. M.; Alghoul, M. A.; Sopian, K.; Mohammed, H. A.; sh Majdi, H.; Al-Shamani, A. N., Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids, Chem. Eng. Process. Process Intensif., 87, 88-103 (2015)
[110] Javadi, F. S., The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger, Int. Commun. Heat Mass Transf., 44, 58-63 (2013)
[111] Khoshvaght-Aliabadi, M.; Salami, M., Turbulent flow of Al_2O_3-water nanofluid through plate-fin heat exchanger (PFHE) with offset-strip channels, Therm. Sci. Eng. Prog., 6, April, 164-176 (2018)
[112] Stogiannis, I. A.; Mouza, A. A.; Paras, S. V., Efficacy of SiO_2 nanofluids in a miniature plate heat exchanger with undulated surface, Int. J. Therm. Sci., 92, 230-238 (2015)
[113] Jokar, A.; O’Halloran, S. P., Heat transfer and fluid flow analysis of nanofluids in corrugated plate heat exchangers using computational fluid dynamics simulation, J. Therm. Sci. Eng. Appl., 5, 1, Article 011002 pp. (2013)
[114] Chen, T.; Kim, J.; Cho, H., Theoretical analysis of the thermal performance of a plate heat exchanger at various chevron angles using lithium bromide solution with nanofluid, Int. J. Refrig., 48, 233-244 (2014)
[115] Ham, J.; Kim, J.; Cho, H., Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution, Appl. Therm. Eng., 108, 1020-1032 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.