×

zbMATH — the first resource for mathematics

Robustness and efficiency of an implicit time-adaptive discontinuous Galerkin solver for unsteady flows. (English) Zbl 07200215
Summary: High-fidelity fluid dynamics simulations of unsteady flows are nowadays of great interest for many industrial fields. This class of simulations, as they are characterized by a wide range of temporal scales, requires robust, accurate and efficient long time integration strategies. These features can be achieved by an appropriate coupling of high-order time integration schemes and time-step adaptation algorithms. The adaptation algorithms are typically based on a local error estimator, which exploits the local truncation error of the time integration scheme and of its lower order embedded scheme. In literature few information are available to assess the benefits in terms of robustness, accuracy, and efficiency provided by the coupling between temporal schemes and adaptation strategies for unsteady CFD simulations. The aim of this work is to reduce this gap, presenting a numerical investigation of the performance for different adaptive time-step strategies, based on implicit Rosenbrock-type temporal schemes, in a high-order discontinuous Galerkin solver. The performance of the considered time integration strategies for the autonomous ODE system resulting from the DG space discretization of the Navier-Stokes equations is assessed for several test cases of increasing stiffness and difficulty, identifying the best scheme and algorithm: (i) the 2D laminar flow around a circular cylinder and around a tandem of cylinders at \(\mathrm{Re}_D = 100\); (ii) the 2D viscous flow through a porous media, modelled as an array of cylinders, at \(\mathrm{Re}_D = 2100\) and \(\mathrm{Re}_D = 10,000\); (iii) the 3D turbulent flow through a 4-wheels rudimentary landing gear (RLG) at \(\mathrm{Re}_D = 1 \times 10^6\).
MSC:
76-XX Fluid mechanics
Software:
ROS3P; PETSc
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Nigro, A., Time integration in the discontinuous Galerkin code MIGALE - unsteady problems, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: industrialization of high-order methods - a top-down approach. IDIHOM: industrialization of high-order methods - a top-down approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128 (2015), Springer International Publishing), 205-230
[2] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int J Numer Methods Fluids, 76, 8, 522-548 (2014)
[3] Crivellini, A.; D’Alessandro, V.; Bassi, F., Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier-Stokes equations: benchmark results for the flow past a sphere up to re=500, Comput Fluids, 86, 442-458 (2013) · Zbl 1290.76022
[4] Chapelier, J.-B.; de la Llave Plata, M.; Renac, F.; Lamballais, E., Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows, Comput Fluids, 95, 0, 210-226 (2014) · Zbl 1391.76209
[5] Carton de Wiart, C.; Hillewaert, K.; Duponcheel, M.; Winckelmans, G., Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number, Int J Numer Methods Fluids, 74, 7, 469-493 (2014)
[6] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int J Numer Methods Eng, 87, 1-5, 232-261 (2011) · Zbl 1242.76085
[7] Fehlberg, E., Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control, Tech. Rep. (1968), NASA
[8] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C. D., Explicit discontinuous Galerkin methods for unsteady problems, Comput Fluids, 61, 86-93 (2012) · Zbl 1365.76117
[9] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Massa, F., Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput Fluids, 118, 305-320 (2015) · Zbl 1390.76833
[10] Bassi, F.; Colombo, A.; De Bartolo, C.; Franchina, N.; Ghidoni, A.; Nigro, A., Investigation of high-order temporal schemes for the discontinuous Galerkin solution of the Navier-Stokes equations, 11th world congress on computational mechanics, WCCM 2014, 5th European conference on computational mechanics, ECCM 2014 and 6th European conference on computational fluid dynamics, ECFD 2014, 5651-5662 (2014)
[11] Nigro, A.; Ghidoni, A.; Rebay, S.; Bassi, F., Modified extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows, Int J Numer Methods Fluids, 76, 9, 549-574 (2014)
[12] Nigro, A.; De Bartolo, C.; Bassi, F.; Ghidoni, A., Up to sixth-order accurate a-stable implicit schemes applied to the discontinuous Galerkin discretized Navier-Stokes equations, J Comput Phys, 276, 136-162 (2014) · Zbl 1349.76247
[13] Lang, J.; Verwer, J., ROS3P-an accurate third-order Rosenbrock solver designed for parabolic problems, BIT Numer Math, 41, 4, 731-738 (2001) · Zbl 0996.65099
[14] Blom, D. S.; Birken, P.; Bijl, H.; Kessels, F.; Meister, A.; van Zuijlen, A. H., A comparison of Rosenbrock and ESDIRK methods combined with iterative solvers for unsteady compressible flows, Adv Comput Math, 42, 6, 1401-1426 (2016) · Zbl 1388.76166
[15] Liu, X.; Xia, Y.; Luo, H.; Xuan, L., A comparative study of Rosenbrock-type and implicit Runge-Kutta time integration for discontinuous Galerkin method for unsteady 3D compressible Navier-Stokes equations, Commun Comput Phys, 20, 1016-1044 (2016) · Zbl 1373.76096
[16] Deparis, S.; Deville, M. O.; Menghini, F.; Pegolotti, L.; Quarteroni, A., Application of the Rosenbrock methods to the solution of unsteady 3D incompressible Navier-Stokes equations, Comput Fluids, 179, 112-122 (2019) · Zbl 1411.76059
[17] Noventa, G.; Massa, F.; Bassi, F.; Colombo, A.; Franchina, N.; Ghidoni, A., A high-order discontinuous Galerkin solver for unsteady incompressible turbulent flows, Comput Fluids, 139, 248-260 (2016) · Zbl 1390.76344
[18] Lang, J.; Teleaga, D., Towards a fully space-time adaptive FEM for magnetoquasistatics, Magn IEEE Trans, 44, 6, 1238-1241 (2008)
[19] Steinebach, F., Order reduction of ROW methods for DAEs and method of lines applications, Techn. Hochsch. (1995), Fachbereich Mathematik
[20] Marzo G.D.. RODAS5(4)-méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques. 1993.
[21] Rang, J., A new stiffly accurate Rosenbrock-Wanner method for solving the incompressible Navier-Stokes equations, (Ansorge, R.; Bijl, H.; Meister, A.; Sonar, T., Recent developments in the numerics of nonlinear hyperbolic conservation laws. Recent developments in the numerics of nonlinear hyperbolic conservation laws, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 120 (2013), Springer Berlin Heidelberg), 301-315 · Zbl 1382.65286
[22] Massa, F.; Noventa, G.; Lorini, M.; Bassi, F.; Ghidoni, A., High-order linearly implicit two-step peer schemes for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, Comput Fluids, 162, 55-71 (2018) · Zbl 1390.76338
[23] Massa, F.; Noventa, G.; Bassi, F.; Colombo, A.; Ghidoni, A.; Lorini, M., High-order linearly implicit two-step peer methods for the discontinuous Galerkin solution of the incompressible RANS equations, ECCOMAS congress 2016 - proceedings of the 7th European congress on computational methods in applied sciences and engineering, 2, 2664-2683 (2016)
[24] Hairer, E.; Wanner, G., Solving ordinary differential equations II (1996), Springer Series in Computational Mathematics · Zbl 0859.65067
[25] Gustafsson, K.; Lundh, M.; Söderlind, G., A PI stepsize control for the numerical solution of ordinary differential equations, BIT, 28, 2, 270-287 (1988) · Zbl 0645.65039
[26] Soderlind, G., Digital filters in adaptive time-stepping, ACM Trans Math Softw, 29, 1, 1-26 (2003) · Zbl 1097.93516
[27] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; De Bartolo, C.; Franchina, N., Time integration in the discontinuous Galerkin code MIGALE - steady problems, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: industrialization of high-order methods - a top-down approach. IDIHOM: industrialization of high-order methods - a top-down approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128 (2015), Springer International Publishing), 179-204
[28] Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, D.; Tesini, P., On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J Comput Phys, 231, 1, 45-65 (2012) · Zbl 1457.65178
[29] Bassi, F.; Rebay, S.; Mariotti, G.; Pedinotti, S.; Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, (Decuypere, R.; Dibelius, G., Proceedings of the 2nd european conference on turbomachinery fluid dynamics and thermodynamics (1997), Technologisch Instituut: Technologisch Instituut Antwerpen, Belgium), 99-108
[30] Brezzi, F.; Manzini, M.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer Methods Partial Differ Equ, 16, 365-378 (2000) · Zbl 0957.65099
[31] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[32] Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat Sb, 147, 3, 271-306 (1959) · Zbl 0171.46204
[33] Rang, J., An analysis of the Prothero-Robinson example for constructing new DIRK and ROW methods, J Comput Appl Math, 262, 105-114 (2014) · Zbl 1302.65179
[34] Selected Papers from NUMDIFF-11 · Zbl 1160.65332
[35] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Massa, F., On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows, Eur J Mech B/Fluids, 55, 367-379 (2016) · Zbl 1408.76360
[36] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K., PETSc users manual, Tech. Rep. (2015), Argonne National Laboratory
[37] Dedicated to Profesor Karl Strehmel, on the occasion of his 70th birthday · Zbl 1072.65107
[38] Special Issue: International Workshop on the Technological Aspects of Mathematics · Zbl 1077.65086
[39] Prothero, A.; Robinson, A., On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math Comput, 28, 125, 145-162 (1974) · Zbl 0309.65034
[40] Ghidoni, A.; Pelizzari, E.; Rebay, S.; Selmin, V., 3D anisotropic unstructured grid generation, Int J Numer Meth Fluids, 51, 9-10, 1097-1115 (2006) · Zbl 1103.76054
[41] Falcone, G.; Kredel, H.; Krietemeyer, M.; Merten, D.; Merz, M.; Pfreundt, F.-J.; Simmendinger, C.; Versick, D., Integrated performance analysis of computer systems (IPACS). Benchmarks for distributed computer systems, PIK - Praxis der Informationsverarbeitung und Kommunikation, 28, 3, 150-159 (2005)
[42] Rajani, B.; Kandasamy, A.; Majumdar, S., Numerical simulation of laminar flow past a circular cylinder, Appl Math Model, 33, 3, 1228-1247 (2009) · Zbl 1168.76305
[43] Braza, M.; Chassaing, P.; Minh, H. H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J Fluid Mech, 165, 79130 (1986) · Zbl 0596.76047
[44] Tritton, D. J., Experiments on the flow past a circular cylinder at low Reynolds numbers, J Fluid Mech, 6, 4, 547567 (1959) · Zbl 0092.19502
[45] Norberg, C., Flow around a circular cylinder: aspects of fluctuating lift, J Fluids Struct, 15, 3, 459-469 (2001)
[46] Homann, F., Influence of higher viscosity on flow around cylinder, Forsch Gebiete Ingenieur, 17, 1-10 (1936)
[47] Kang, S.; Choi, H.; Lee, S., Erratum: laminar flow past a rotating circular cylinder, Phys Fluids, 11, 11, 3312-3321 (1999) · Zbl 1149.76423
[48] Mittal, S.; Kumar, V.; Raghuvanshi, A., Unsteady incompressible flows past two cylinders in tandem and staggered arrangements, Int J Numer Methods Fluids, 25, 11, 1315-1344 (1997) · Zbl 0909.76050
[49] Nicolle, A.; Eames, I., Numerical study of flow through and around a circular array of cylinders, J Fluid Mech, 679, 1-31 (2011) · Zbl 1241.76146
[50] Chang, K.; Constantinescu, G., Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders, J Fluid Mech, 776, 161-199 (2015)
[51] Zong, L.; Nepf, H., Spatial distribution of deposition within a patch of vegetation, Water Resour Res, 47, 3, 1-12 (2011)
[52] Rudimentary landing gear webpage. http://cfd.mace.manchester.ac.uk/twiki/bin/view/ATAAC/TestCase012SimpleLandingGear?sortcol=1;table=3;up=0#sorted_table.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.