The influence of stratification on secondary instability in free shear layers. (English) Zbl 0721.76034

Summary: We analyze the stability of horizontaly periodic, two-dimensional, finite-amplitude Kelvin-Helmholtz billows with respect to infinitesimal three-dimensional perturbations having the same streamwise wavelength for several different levels of the initial density stratification. A complete analysis of the energy budget for this class of secondary instabilities establishes that the contribution to their growth from shear conversion of the basic-state kinetic energy is relatively insensitive to the strength of the stratification over the range of values considered, suggesting that dynamical shear instability constitutes the basic underlying mechanism. Indeed, during the initial stages of their growth, secondary instabilities derive their energy predominantly from shear conversion. However, for initial Richardson numbers between 0.065 and 0.13, the primary source of kinetic energy for secondary instabilities at the time the parent wave climaxes is in fact the conversion of potential energy by convective overturning in the cores of the individual billows. A comparison between the secondary instability properties of unstratified Kelvin-Helmholtz billows and Stuart vortices is made, as the latter have often been assumed to provide an adequate approximation to the former. Our analyses suggest that the Stuart vortex model has several shortcomings in this regard.


76V05 Reaction effects in flows
76E17 Interfacial stability and instability in hydrodynamic stability
76E99 Hydrodynamic stability
Full Text: DOI


[1] DOI: 10.1017/S0022112084000781 · Zbl 0578.76065
[2] DOI: 10.1017/S0022112088000916
[3] DOI: 10.1017/S0022112086001726
[4] DOI: 10.1017/S002211206600034X
[5] Davis, J. Atmos. Sci. 36 pp 2395– (1979)
[6] DOI: 10.1017/S0022112084000264 · Zbl 0546.76077
[7] DOI: 10.1017/S002211207400190X
[8] Thorpe, J. Geophys. Res. 92 pp 5231– (1987)
[9] DOI: 10.1007/BF02188312
[10] Thorpe, Geophys. Astrophys. Fluid Dyn. 34 pp 175– (1985)
[11] DOI: 10.1017/S0022112066001241
[12] DOI: 10.1017/S0022112073000911
[13] DOI: 10.1017/S0022112081000906
[14] DOI: 10.1017/S0022112071000557
[15] DOI: 10.1017/S002211208600099X
[16] DOI: 10.1017/S0022112068000972
[17] DOI: 10.1146/annurev.fl.20.010188.002043
[18] DOI: 10.1017/S0022112067000941 · Zbl 0152.45403
[19] DOI: 10.1017/S0022112082000044 · Zbl 0479.76056
[20] DOI: 10.1175/1520-0469(1989)046 2.0.CO;2
[21] DOI: 10.1017/S0022112079001828
[23] Klaassen, Geophys. Astrophys. Fluid Dyn. 32 pp 23– (1985)
[24] Klaassen, J. Fluid Mech. 155 pp 1– (1985)
[25] DOI: 10.1175/1520-0469(1985)042 2.0.CO;2
[26] Klaassen, Geophys. Astrophys. Fluid Dyn. (sub judice) 152 pp 125– (1991)
[27] DOI: 10.1017/S002211208500060X
[28] DOI: 10.1146/annurev.fl.16.010184.002053
[29] DOI: 10.1103/PhysRevLett.57.2157
[30] Peltier, Geophys. Astrophys. Fluid Dyn. 10 pp 53– (1978)
[31] DOI: 10.1017/S0022112076001353 · Zbl 0318.76033
[32] DOI: 10.1017/S0022112083002931 · Zbl 0561.76055
[33] DOI: 10.1017/S0022112072002617
[34] DOI: 10.1017/S0022112087002866 · Zbl 0638.76060
[35] DOI: 10.1007/BF02188310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.