×

On the periodic groups saturated with finite simple groups of Lie type \(B_3\). (English. Russian original) Zbl 1481.20136

Sib. Math. J. 61, No. 3, 499-503 (2020); translation from Sib. Mat. Zh. 61, No. 3, 634-640 (2020).
Summary: Let \(\mathfrak{M}\) be a set of finite groups. Given a group \(G\), denote by \(\mathfrak{M}(G)\) the set of all subgroups of \(G\) isomorphic to the elements of \(\mathfrak{M} \). A group \(G\) is said to be saturated with groups from \(\mathfrak{M} \) (saturated with \(\mathfrak{M} \), for brevity) if each finite subgroup of \(G\) lies in an element of \(\mathfrak{M}(G)\). We prove that a periodic group \(G\) saturated with \(\mathfrak{M}=\left\{O_7(q)\mid{q}\equiv\pm3 \pmod 8)\right\}\) is isomorphic to \(O_7(F)\) for some locally finite field \(F\) of odd characteristic.

MSC:

20F50 Periodic groups; locally finite groups
20E32 Simple groups
20D06 Simple groups: alternating groups and groups of Lie type

Software:

GAP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Carter, R. W., Simple Groups of Lie Type (1972), London: John Wiley and Sons, London · Zbl 0248.20015
[2] Belyaev, V. V., Locally finite Chevalley groups, Studies in Group Theory, 39-50 (1984), Sverdlovsk: Ural Scientific Center, Sverdlovsk · Zbl 0587.20019
[3] Borovik, A. V., Embeddings of finite Chevalley groups and periodic linear groups, Sib. Math. J., 24, 6, 843-851 (1983) · Zbl 0551.20026
[4] Hartley, B.; Shute, G., Monomorphisms and direct limits of finite groups of Lie type, Q. J. Math. Ser. 2, 35, 137, 49-71 (1984) · Zbl 0547.20024
[5] Thomas, S., The classification of the simple periodic linear groups, Arch. Math., 41, 103-116 (1983) · Zbl 0518.20039
[6] Larsen, M. J.; Pink, R., Finite subgroups of algebraic groups, J. Amer. Math. Soc., 24, 4, 1105-1158 (2011) · Zbl 1241.20054
[7] Shlepkin, A. K., On some periodic groups saturated by finite simple groups, Siberian Adv. Math., 9, 2, 100-108 (1999) · Zbl 0943.20036
[8] Rubashkin, A. G.; Filippov, K. A., Periodic groups saturated with the groups L_2(p^n), Sib. Math. J., 46, 6, 1119-1122 (2005) · Zbl 1118.20039
[9] Lytkina, D. V.; Shlepkin, A. K., Periodic groups saturated with finite simple groups of types U_3 and L_3, Algebra and Logic, 55, 4, 289-294 (2016) · Zbl 1368.20043
[10] Filippov K. A., Groups Saturated with Finite Nonabelian Groups and Their Extensions [Russian], PhD Thesis, Krasnoyarsk (2005).
[11] Filippov, K. A., On periodic groups saturated by finite simple groups, Sib. Math. J., 53, 2, 345-351 (2012) · Zbl 1255.20037
[12] Lytkina, D. V.; Mazurov, V. D., Characterization of simple symplectic groups of degree 4 over locally finite fields in the class of periodic groups, Algebra and Logic, 57, 3, 201-210 (2018) · Zbl 1483.20085
[13] Wei, X.; Guo, W.; Lytkina, D. V.; Mazurov, V. D., Characterization of locally finite simple groups of the type^3D_4 over fields of odd characteristic in the class of periodic groups, Sib. Math. J., 59, 5, 799-804 (2018) · Zbl 1515.20188
[14] Isaacs, I. M., Finite Group Theory (2008), Providence: Amer. Math. Soc., Providence · Zbl 1169.20001
[15] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1985), Oxford: Clarendon Press, Oxford · Zbl 0568.20001
[16] Bray, J. N.; Holt, D. F.; Roney-Dougal, C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (2013), Cambridge: Camb. Univ. Press, Cambridge · Zbl 1303.20053
[17] Wong, W. J., Twisted wreath products and Sylow 2-subgroups of classical simple groups, Math. Z., 97, 406-424 (1967) · Zbl 0166.02103
[18] GAP—Groups, Algorithms, and Programming, Version 4.8.9 (2017); http://www.gap-system.org.
[19] Lytkina, D. V.; Tukhvatullina, L. R.; Filippov, K. A., Periodic groups saturated by finite simple groups U_3(2^m), Algebra and Logic, 47, 3, 166-175 (2008) · Zbl 1155.20041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.