×

7-dimensional compact Riemannian manifolds with Killing spinors. (English) Zbl 0722.53038

Let M be a compact Riemannian spin manifold. A section \(\psi\) of the spin bundle is called a Killing spinor if \(\nabla_ X\psi =\lambda X\cdot \psi,\) where \(\lambda \neq 0\) is a (real) constant and X any tangent vector. The authors show that M has at least two independent Killing spinors if dim(M) is odd and M is simply connected and Einstein-Sasaki. In dimension 7 they classify (in a certain sense) the cases with two or three independent Killing or parallel spinors. Generalizations of these results have been obtained recently by Ch. Bär (Preprint, Bonn 1991).
Reviewer: W.Ballmann (Bonn)

MSC:

53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Atiyah, M.F., Hitchin, N., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A326, 425–461 (1978) · Zbl 0389.53011
[2] Baum, H.: Odd-dimensional Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom.7, 2 (1989) · Zbl 0708.53039
[3] Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom. (to appear) · Zbl 0694.53043
[4] Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété Riemannienne. Lecture Notes in Mathematics, Vol. 194. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0223.53034
[5] Blair, D.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0319.53026
[6] Duff, M.J., Nilsson, B., Pope, C.N.: Kaluza-Klein supergravity. Phys. Rep.130, 1–142 (1986)
[7] Fischer, A.E., Wolf, J.A.: The structure of compact Ricci-flat Riemannian manifolds. J. Diff. Geom.10, 277–288 (1975) · Zbl 0313.53020
[8] Friedrich, Th.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr.97, 117–146 (1980) · Zbl 0462.53027
[9] Friedrich, Th.: A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds. Math. Nachr.102, 53–56 (1981) · Zbl 0481.53039
[10] Friedrich, Th.: Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeiten. Colloq. Math.44, 277–290 (1981) · Zbl 0487.53016
[11] Friedrich, Th., Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Global Anal. Geom.3, 265–273 (1985) · Zbl 0577.58034
[12] Friedrich, Th., Kath, I.: Einstein manifolds of dimension five with small eigenvalue of the Dirac operator, J. Diff. Geom.29, 263–279 (1989) · Zbl 0633.53069
[13] Friedrich, Th., Kath, I.: Compact 5-dimensional Riemannian manifolds with parallel spinors, Math. Nachr. (to appear) · Zbl 0709.53022
[14] Friedrich, Th., Kath, I.: Variétés Riemanniennes compactes de dimension 7 admettant des spineurs de Killing. C.R. Acad. Sci. Paris Ser. I. t.307, 967–969 (1988) · Zbl 0659.53017
[15] Friedrich, Th., Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. Math. Nachr.106, 271–299 (1982) · Zbl 0503.53035
[16] Friedrich, Th. (Ed.): Self-dual Riemannian geometry and instantons. Leipzig: Teubner 1981 · Zbl 0471.00021
[17] Futaki, A.: Kähler-Einstein metrics and integral invariants. Lecture Notes in Mathematics, Vol. 1314. Berlin, Heidelberg, New York: Springer 1988 · Zbl 0646.53045
[18] Hijazi, O.: Caractérisation de la sphère par les premières valeurs propres de l’opérateur de Dirac en dimension 3, 4, 7 et 8. C.R. Acad. Sci. Paris, Ser. I303, 417–419 (1986) · Zbl 0606.53024
[19] Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys.104, 151–162 (1986) · Zbl 0593.58040
[20] Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Diff. Geom.9, 435–441 (1974) · Zbl 0281.53039
[21] Hitchin, N.: Kählerian twistor spaces. Proc. Lond. Math. Soc.43, 133–150 (1981) · Zbl 0474.14024
[22] Husemoller, D.: Fibre bundles. New York: 1966 · Zbl 0144.44804
[23] Ishihara, S., Konishi, M.: Differential geometry of fibred spaces. Kyoto: 1973 · Zbl 0337.53001
[24] Kirchberg, K.D.: Compact six-dimensional Kähler spin manifolds of positive scalar curvature with the smallest positive first eigenvalue of the Dirac operator. Math. Ann.282, 157–176 (1988) · Zbl 0628.53061
[25] Kobayashi, S.: On compact Kähler manifolds with positive definite Ricci tensor. Ann. Math.74, 570–574 (1961) · Zbl 0107.16002
[26] Kobayashi, S.: Topology of positively pinched Kähler geometry. Tohoku Math. J.15, 121–139 (1963) · Zbl 0114.37601
[27] Koiso, N., Sakane, Y.: Non-homogeneous Kähler-Einstein metrics on compact complex manifolds. Preprint · Zbl 0591.53056
[28] Kostant, B.: Quantization and unitary representations. Lecture Notes in Mathematics, Vol. 170, pp. 87–207. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0223.53028
[29] Kreck, M., Stolz, St.: A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds withSU(3){\(\times\)}SU(2){\(\times\)}U(1)-symmetry. Ann. Math.127, 373–388 (1988) · Zbl 0649.53029
[30] Lichnerowicz, A.: Spin manifolds, Killing spinors, and universality of the Hijazi inequality. Lett. Math. Phys.13, 331–344 (1987) · Zbl 0624.53034
[31] Lichnerowicz, A.: Les spineurs-twisteurs sur une varieté spinorielle compacte. C.R. Acad. Sci. Paris, Ser. I306, 381–385 (1988) · Zbl 0641.53014
[32] Nieuwenhuizen, P. van, Warner, N.P.: Integrability conditions for Killing spinors. Commun. Math. Phys.93, 277–284 (1984) · Zbl 0549.53011
[33] Postnikov, M.M.: Lectures on Geometry V, Lie groups and algebras. Moscow: 1982 (Russ.) · Zbl 0597.22001
[34] Salamon, S.: Topics in four-dimensional Riemannian geometry. In: Geometry Seminar ”Luigi Bianchi”. Lecture Notes in Mathematics, Vol. 1022. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0532.53035
[35] Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds withc 1(M)>0. Invent. Math.89, 225–246 (1987) · Zbl 0599.53046
[36] Tian, G., Yau, S.-T.: Kähler-Einstein metrics on complex surfaces withc 1>0. Commun. Math. Phys.112, 175–203 (1987) · Zbl 0631.53052
[37] Séminaire Palaiseau, Géométrie des surfacesK3: modules et périodes. Asterisque126 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.