zbMATH — the first resource for mathematics

FDEMtools: a Matlab package for FDEM data inversion. (English) Zbl 1451.65042
Summary: Electromagnetic induction surveys are among the most popular techniques for non-destructive investigation of soil properties, in order to detect the presence of both ground inhomogeneities and particular substances. This paper introduces a MATLAB package, called FDEMtools, for the inversion of frequency domain electromagnetic data collected by a ground conductivity meter, which includes a graphical user interface to interactively modify the parameters of the computation and visualize the results. Based on a non-linear forward model used to describe the interaction between an electromagnetic field and the soil, the software reconstructs the distribution of either the electrical conductivity or the magnetic permeability with respect to depth, by a regularized damped Gauss-Newton method. The regularization part of the algorithm is based on a low-rank approximation of the Jacobian of the non-linear model. The package allows the user to experiment with synthetic and experimental data sets, and different regularization strategies, in order to compare them and draw conclusions.

65F22 Ill-posedness and regularization problems in numerical linear algebra
65R32 Numerical methods for inverse problems for integral equations
65Y15 Packaged methods for numerical algorithms
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
Full Text: DOI
[1] Anderson, WL, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering, Geophysics, 44, 7, 1287-1305 (1979)
[2] Björck, Å., Numerical Methods for Least Squares Problems (1996), Philadelphia: SIAM, Philadelphia · Zbl 0847.65023
[3] Boaga, J.; Ghinassi, M.; D’Alpaos, A.; Deidda, GP; Rodriguez, G.; Cassiani, G., Geophysical investigations unravel the vestiges of ancient meandering channels and their dynamics in tidal landscapes, Sci. Rep., 8, 1708 (2018)
[4] Borchers, B.; Uram, T.; Hendrickx, J., Tikhonov regularization of electrical conductivity depth profiles in field soils, Soil Sci. Soc. Am. J, 61, 4, 1004-1009 (1997)
[5] Cassiani, G., Ursino, N., Deiana, R., Vignoli, G., Boaga, J., Rossi, M., Perri, M.T., Blaschek, M., Duttmann, R., Meyer, S., Ludwig, R., Soddu, A., Dietrich, P., Werban, U.: Noninvasive monitoring of soil static characteristics and dynamic states: a case study highlighting vegetation effects on agricultural land. Vadose Zone J 11(13) (2012)
[6] Deidda, GP; Díaz de Alba, P.; Rodriguez, G., Identifying the magnetic permeability in multi-frequency EM data inversion, Electron. Trans. Numer. Anal., 47, 1-17 (2017) · Zbl 1372.65118
[7] Deidda, G.P., Díaz de Alba, P., Rodriguez, G., Vignoli, G.: Smooth and sparse inversion of EMI data from multi-configuration measurements. In: 2018 IEEE 4Th International Forum on Research and Technology for Society and Industry (RTSI) (RTSI 2018), pp 213-218, Palermo (2018)
[8] Deidda, G.P., Díaz de Alba, P., Rodriguez, G., Vignoli, G.: Inversion of multi-configuration complex EMI data with minimum gradient support regularization. arXiv:1904.04563 [math.NA] (2019)
[9] Deidda, GP; Fenu, C.; Rodriguez, G., Regularized solution of a nonlinear problem in electromagnetic sounding, Inverse Problems, 30, 125,014 (2014)
[10] Díaz de Alba, P.; Fermo, L.; van der Mee, C.; Rodriguez, G., Recovering the electrical conductivity of the soil via a linear integral model, J. Comput. Appl. Math., 352, 132-145 (2019) · Zbl 1410.65119
[11] Díaz de Alba, P., Rodriguez, G.: Regularized inversion of multi-frequency EM data in geophysical applications. In: Ortegón Gallego, F., Redondo Neble, M., Rodríguez Galván, J. (eds.) Trends in Differential Equations and Applications, SEMA SIMAI Springer Series, vol. 8, pp 357-369. Springer, Switzerland (2016) · Zbl 06981865
[12] Dragonetti, G.; Comegna, A.; Ajeel, A.; Deidda, GP; Lamaddalena, N.; Rodriguez, G.; Vignoli, G.; Coppola, A., Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements, Hydrol. Earth. Syst. Sc., 22, 1509-1523 (2018)
[13] Golub, GH; Van Loan, CF, Matrix Computations (1996), Baltimore: The John Hopkins University Press, Baltimore
[14] Hansen, P.; Jensen, T.; Rodriguez, G., An adaptive pruning algorithm for the discrete L-curve criterion, J. Comput. Appl. Math., 198, 2, 483-492 (2007) · Zbl 1101.65044
[15] Hansen, PC, Rank-Deficient and discrete Ill-Posed Problems (1998), Philadelphia: SIAM, Philadelphia
[16] Hansen, PC, Regularization Tools: version 4.0 for Matlab 7.3, Numer. Algorithms, 46, 189-194 (2007) · Zbl 1128.65029
[17] Hendrickx, JMH; Borchers, B.; Corwin, DL; Lesch, SM; Hilgendorf, AC; Schlue, J., Inversion of soil conductivity profiles from electromagnetic induction measurements, Soil Sci. Soc. Am. J, 66, 3, 673-685 (2002)
[18] Hendrickx, JMH; Borchers, B.; Corwin, DL; Lesch, SM; Hilgendorf, AC; Schlue, J., Inversion of soil conductivity profiles from electromagnetic induction measurements: Theory and experimental verification, Soil Sci. Soc. Am. J, 66, 3, 673-685 (2002)
[19] Hochstenbach, ME; Reichel, L.; Rodriguez, G., Regularization parameter determination for discrete ill-posed problems, J. Comput. Appl. Math., 273, 132-149 (2015) · Zbl 1295.65046
[20] Huang, H.; SanFilipo, B.; Oren, A.; Won, IJ, Coaxial coil towed EMI sensor array for uxo detection and characterization, J. Appl. Geophys., 61, 3, 217-226 (2007)
[21] Lascano, E.; Martinelli, P.; Osella, A., EMI data from an archaeological resistive target revisited, Near Surf. Geophy., 4, 6, 395-400 (2006)
[22] Martinelli, P.; Duplaá, MC, Laterally filtered 1D inversions of small-loop, frequency-domain EMI data from a chemical waste site, Geophysics, 73, 4, F143-F149 (2008)
[23] McNeill, J.D.: Electromagnetic terrain conductivity measurement at low induction numbers. Technical Report TN-6 Geonics Limited (1980)
[24] Morigi, S.; Reichel, L.; Sgallari, F.; Zama, F., Iterative methods for ill-posed problems and semiconvergent sequences, J. Comput. Appl. Math., 193, 1, 157-167 (2006) · Zbl 1092.65025
[25] Morozov, VA, The choice of parameter when solving functional equations by regularization, Dokl. Akad. Nauk SSSR, 175, 1225-1228 (1962)
[26] Osella, A.; de la Vega, M.; Lascano, E., 3D electrical imaging of an archaeological site using electrical and electromagnetic methods, Geophysics, 70, 4, G101-G107 (2005)
[27] Park, Y.; Reichel, L.; Rodriguez, G.; Yu, X., Parameter determination for Tikhonov regularization problems in general form, J. Comput. Appl. Math., 343, 12-25 (2018) · Zbl 1391.65100
[28] Portniaguine, O.; Zhdanov, M., Focusing geophysical inversion images, Geophysics, 64, 874-887 (1999)
[29] Reichel, L.; Rodriguez, G., Old and new parameter choice rules for discrete ill-posed problems, Numer. Algorithms, 63, 1, 65-87 (2013) · Zbl 1267.65045
[30] Vignoli, G.; Deiana, R.; Cassiani, G., Focused inversion of Vertical Radar Profile (VRP) travel-time data, Geophysics, 77, H9-H18 (2012)
[31] Vignoli, G.; Fiandaca, G.; Christiansen, A.; Kirkegaard, C.; Auken, E., Sharp spatially constrained inversion with applications to transient electromagnetic data, Geophys. Prospect., 63, 243-255 (2015)
[32] Wait, JR, Geo-Electromagnetism (1982), New York: New York: Academic, New York
[33] Ward, S.H., Hohmann, G.W.: Electromagnetic theory for geophysical applications. In: Electromagnetic Methods in Applied Geophysics. Society of Exploration Geophysicists, Tulsa (1987)
[34] Yao, R.; Yang, J., Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method, Agric. Water Manag., 97, 12, 1961-1970 (2010)
[35] Zhdanov, M., Geophysical Inverse Theory and Regularization Problems (2002), Amsterdam: Elsevier, Amsterdam
[36] Zhdanov, M.; Vignoli, G.; Ueda, T., Sharp boundary inversion in crosswell travel-time tomography, J. Geophys. Eng., 3, 122-134 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.