×

Packing convex 3D objects with special geometric and balancing conditions. (English) Zbl 1462.90111

Vasant, Pandian (ed.) et al., Intelligent computing and optimization. Proceedings of the 2nd international conference on intelligent computing and optimization 2019 (ICO 2019), Koh Samui, Thailand, October 3–4, 2019. Cham: Springer. Adv. Intell. Syst. Comput. 1072, 273-281 (2020).
Summary: Packing convex 3D objects inside a convex container with balancing conditions is considered. The convex container is divided into subcontainers by a given number of supporting boards. The problem has applications in space engineering for rocketry design and takes into account both geometric (object orientations, minimum and/or maximum allowable distances between objects, combinatorial characteristics of the object arrangements inside subcontainers) and mechanical constraints (equilibrium, moments of inertia, stability). A general nonlinear optimization model is introduced and a solution strategy is provided. Numerical results are presented to illustrate the approach.
For the entire collection see [Zbl 1429.68009].

MSC:

90C27 Combinatorial optimization
90C30 Nonlinear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fasano, G., Pinter, J. (eds.): Modeling and Optimization in Space Engineering, vol. 73. Springer, New York (2013) · Zbl 1255.90006
[2] Fasano, G., Pinter, J. (eds.): Optimized Packings and Their Applications, vol. 105. Springer, New York (2015) · Zbl 1329.90005
[3] Fasano, G., Pinter, J. (eds.): Modeling and Optimization in Space Engineering, vol. 2019. Springer, New York (2019) · Zbl 1415.49001
[4] Che, C., Wang, Y., Teng, H.: Test problems for quasi-satellite packing: cylinders packing with behaviour constraints and all the optimal solutions known. Opt. Online (2008). http://www.optimisation-online.org/DB_HTML/2008/09/2093.html
[5] Sun, Z., Teng, H.: Optimal packing design of a satellite module. Eng. Opt. 35(5), 513-530 (2003) · doi:10.1080/03052150310001602335
[6] Liu, J.F., Li, G.: Basin filling algorithm for the circular packing problem with equilibrium behavioural constraints. Sci. China Inf. Sci. 53(5), 885-895 (2010) · Zbl 1497.52028 · doi:10.1007/s11432-010-0080-2
[7] Chazelle, B., Edelsbrunner, H., Guibas, L.J.: The complexity of cutting complexes. Discrete Comput. Geom. 4(2), 139-181 (1989) · Zbl 0663.68055 · doi:10.1007/BF02187720
[8] Stoyan, Yu., Romanova, T., Pankratov, A., Kovalenko, A., Stetsyuk, P.: Modeling and optimization of balance packing problems. In: Fasano, G., Pinter, J. (eds.) Space Engineering. Modeling and Optimization with Case Studies, vol. 114, pp. 369-400. Springer, New York (2016) · Zbl 1380.90170
[9] Stoyan, Yu., Romanova, T.: Mathematical models of placement optimisation: two- and three-dimensional problems and applications. In: Fasano, G., Pinter J. (eds.) Modeling and Optimization in Space Engineering, vol. 73, pp. 363-388. Springer, New York (2012) · Zbl 1365.90163
[10] Stoyan, Yu., Grebennik, I., Romanova, T., Kovalenko, A.: Optimized packings in space engineering applications: Part II. In: Fasano, G., Pinter, J. (eds.) Modeling and Optimization in Space Engineering, pp. 439-457. Springer, New York (2019) · Zbl 1415.49001
[11] Kovalenko, A., Romanova, T., Stetsyuk, P.: Balance packing problem for 3D-objects: mathematical model and solution methods. Cybern. Syst. Anal. 51(4), 556-565 (2015) · Zbl 1341.68295 · doi:10.1007/s10559-015-9746-5
[12] Stetsyuk, P., Romanova, T., Scheithauer, G.: On the global minimum in a balanced circular packing problem. Optim. Lett. 10, 1347-1360 (2016) · Zbl 1353.90133 · doi:10.1007/s11590-015-0937-9
[13] Stoyan, Yu., Pankratov, A., Romanova, T.: Quasi phi-functions and optimal packing of ellipses. J. Global Optim. 65(2), 283-307 (2016) · Zbl 1369.90151 · doi:10.1007/s10898-015-0331-2
[14] Stoyan, Yu., Romanova, T., Pankratov, A., Chugay, A.: Optimized object packings using quasi-phi-functions. In: Fasano, G., Pinter, J. (eds.) Optimized Packings with Applications, vol. 105, pp. 265-293. Springer, New York (2015) · Zbl 1390.90483 · doi:10.1007/978-3-319-18899-7_13
[15] Stoyan, Yu., Pankratov, A., Romanova, T.: Cutting and packing problems for irregular objects with continuous rotations: mathematical modeling and nonlinear optimization. J. Oper. Res. Soc. 67(5), 786-800 (2016) · doi:10.1057/jors.2015.94
[16] Romanova, T., Bennell, J., Stoyan, Y., Pankratov, A.: Packing of concave polyhedra with continuous rotations using nonlinear optimization. Eur. J. Oper. Res. 268, 37-53 (2018) · Zbl 1403.90586 · doi:10.1016/j.ejor.2018.01.025
[17] Romanova, T., Pankratov, A., Litvinchev, I., Pankratova, Yu., Urniaieva, I.: Optimized packing clusters of objects in a rectangular container. Math. Probl. Eng., Article ID 4136430 (2019). https://doi.org/10.1155/2019/4136430 · Zbl 1435.52011 · doi:10.1155/2019/4136430
[18] Litvinchev, I., Infante, L., Ozuna, L.: Approximate packing: integer programming models, valid inequalities and nesting. In: Fasano, G., Pinter, J.D. (eds.) Optimized Packings and Their Applications, vol. 105, pp. 117-135 (2015) · Zbl 1390.90470 · doi:10.1007/978-3-319-18899-7_9
[19] Torres, R., Marmolejo, J.A., Litvinchev, I.: Binary monkey algorithm for approximate packing non-congruent circles in a rectangular container. Wirel. Netw. (2018). https://doi.org/10.1007/s11276-018-1869-y · doi:10.1007/s11276-018-1869-y
[20] Litvinchev, I., Infante, L., Ozuna, L.: Approximate circle packing in a rectangular container. In: Gonzalez-Ramirez, R.G., et al. (eds.) Computational Logistics 5th International Conference Proceedings, Formulations and Valid Inequalities. Lecture Notes in Computer Science, vol. 8760/2014, 4, pp. 7-60. Springer, Berlin-Heidelberg, Valparaiso (2014) · Zbl 1327.93121
[21] Stoyan, Y., Yaskov, G.: Packing equal circles into a circle with circular prohibited areas. Int. J. Comput. Math. 89(10), 1355-1369 (2012) · Zbl 1255.52014 · doi:10.1080/00207160.2012.685468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.