Alrimawi, Fadi; Hirzallah, Omar; Kittaneh, Fuad Singular value inequalities involving convex and concave functions of positive semidefinite matrices. (English) Zbl 1446.15004 Ann. Funct. Anal. 11, No. 4, 1257-1273 (2020). Summary: Let \(A\) and \(B\) be \(n\times n\) positive semidefinite matrices, and let \(\alpha,\beta\in (0,1)\) such that \(\alpha+\beta=1\). Among other inequalities, it is shown that (a) If \(f\) is a non-negative concave function on \([0,\infty)\), then \[ s_j(\alpha f(A)+\beta f(B))\leq s_j(f(\sqrt{2}\left|\alpha A+i\beta B\right|)) \] for \(j=1,\dots,n\).(b) If \(f\) is a non-negative strictly increasing convex function on \([0,\infty)\) with \(f(0)=0\), then \[ s_j(f\left(\alpha A+\beta B\right))\leq\sqrt{2}s_j(\alpha f\left(A\right) +i\beta f\left(B\right)) \] for \(j=1,\dots ,n\). Here \(s_j\left(X\right)\) denotes the largest \(j\)th singular value of the matrix \(X\). MSC: 15A18 Eigenvalues, singular values, and eigenvectors 15A42 Inequalities involving eigenvalues and eigenvectors 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory 47A30 Norms (inequalities, more than one norm, etc.) of linear operators Keywords:accretive-dissipative matrix; positive semidefinite matrix; singular value; unitarily invariant norm; convex function; concave function; inequality PDF BibTeX XML Cite \textit{F. Alrimawi} et al., Ann. Funct. Anal. 11, No. 4, 1257--1273 (2020; Zbl 1446.15004) Full Text: DOI References: [1] Ando, T.; Bhatia, R., Eigenvalue inequalities associated with the Cartesian decomposition, Linear Multilinear Algebra, 22, 133-147 (1987) · Zbl 0641.15007 [2] Bhatia, R., Matrix Analysis (1997), New York: Springer, New York [3] Bhatia, R.; Kittaneh, F., On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11, 272-277 (1990) · Zbl 0704.47014 [4] Bhatia, R.; Kittaneh, F., Norm inequalities for positive operators, Lett. Math. Phys., 43, 225-231 (1998) · Zbl 0912.47005 [5] Bhatia, R.; Kittaneh, F., Cartesian decompositions and Schatten norms, Linear Algebra Appl., 318, 109-116 (2000) · Zbl 0981.47008 [6] Bhatia, R.; Kittaneh, F., The singular values of \(A+B\) and \(A+iB\), Linear Algebra Appl., 431, 1502-1508 (2009) · Zbl 1172.47011 [7] Bhatia, R.; Zhan, X., Compact operators whose real and imaginary parts are positive, Proc. Am. Math. Soc., 129, 2277-2281 (2001) · Zbl 0965.47013 [8] Bhatia, R.; Zhan, X., Norm inequalities for operators with positive real part, J. Oper. Theory, 50, 67-76 (2003) · Zbl 1043.47011 [9] Drury, S.; Lin, M., Singular value inequalities for matrices with numerical range in a sector, Oper. Matrix., 4, 1143-1148 (2014) · Zbl 1315.15016 [10] Simon, B., Trace ideals and their applications (1979), Cambridge: Cambridge University Press, Cambridge [11] Tao, Y., More results on singular value inequalities of matrices, Linear Algebra Appl., 416, 724-729 (2006) · Zbl 1106.15013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.