Merkur’ev, A. S.; Suslin, A. A. The group \(K_ 3\) for a field. (English. Russian original) Zbl 0725.19003 Math. USSR, Izv. 36, No. 3, 541-565 (1991); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 54, No. 3, 522-545 (1990). See the review in Zbl 0711.19002. Cited in 1 ReviewCited in 13 Documents MSC: 19D45 Higher symbols, Milnor \(K\)-theory 11R70 \(K\)-theory of global fields 11E70 \(K\)-theory of quadratic and Hermitian forms 12F10 Separable extensions, Galois theory 11E81 Algebraic theory of quadratic forms; Witt groups and rings 18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects) Keywords:relative K-theory; Severi-Brauer schemes; Chern classes; Milnor K-groups; Quillen K-groups; torsion; cotorsion; Hilbert 90 theorem; Galois extension; Milnor’s canonical epimorphism; Witt ring Citations:Zbl 0711.19002 PDF BibTeX XML Cite \textit{A. S. Merkur'ev} and \textit{A. A. Suslin}, Math. USSR, Izv. 36, No. 3, 541--565 (1991; Zbl 0725.19003); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 54, No. 3, 522--545 (1990) Full Text: DOI OpenURL