Borwein, J. M.; Borwein, P. B. A cubic counterpart of Jacobi’s identity and the AGM. (English) Zbl 0725.33014 Trans. Am. Math. Soc. 323, No. 2, 691-701 (1991). The authors’ introduction: “We produce exact cubic analogues of Jacobi’s celebrated theta function identity and of the arithmetic-geometric mean iteration of Gauss and Legendre. The iteration in question is \[ a_{n+1}:=\frac{a_ n+2b_ n}{3}\text{ and } b_{n+1}:=^ 3\sqrt{b_ n(\frac{a^ 2_ n+a_ nb_ n+b^ 2_ n}{3})}. \] The limit of this iteration is identified in terms of the hypergeometric function \({}_ 2F(1/3,2/3;1;\cdot)\), which supports a particularly simple cubic transformation. Reviewer: J.Matkowski (Bielsko-Biała) Cited in 11 ReviewsCited in 91 Documents MSC: 33E05 Elliptic functions and integrals 33C05 Classical hypergeometric functions, \({}_2F_1\) 39B12 Iteration theory, iterative and composite equations 11F27 Theta series; Weil representation; theta correspondences Keywords:Jacobi theta function; arithmetic-geometric mean iteration PDF BibTeX XML Cite \textit{J. M. Borwein} and \textit{P. B. Borwein}, Trans. Am. Math. Soc. 323, No. 2, 691--701 (1991; Zbl 0725.33014) Full Text: DOI Link OpenURL Digital Library of Mathematical Functions: Ramanujan’s Cubic Transformation ‣ §15.8(v) Cubic Transformations ‣ §15.8 Transformations of Variable ‣ Properties ‣ Chapter 15 Hypergeometric Function