×

zbMATH — the first resource for mathematics

Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary. (English. Russian original) Zbl 07250918
Sb. Math. 211, No. 7, 1014-1040 (2020); translation from Mat. Sb. 211, No. 7, 121-150 (2020).
MSC:
30H05 Spaces of bounded analytic functions of one complex variable
34A35 Ordinary differential equations of infinite order
46A04 Locally convex Fréchet spaces and (DF)-spaces
46E10 Topological linear spaces of continuous, differentiable or analytic functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. P. Havin 1966 Spaces of analytic functions Itogi Nauki. Ser. Mat. Analiz 1964 VINITI, Moscow 76-164
[2] Yu. F. Korobeinik 1996 On the countable definability of sets Mat. Zametki59 3 382-395 · Zbl 0898.46004
[3] English transl. in Yu. F. Korobeinik 1996 Math. Notes59 3 269-278 · Zbl 0898.46004
[4] O. V. Epifanov 1974 The problem concerning the epimorphicity of a convolution operator in convex domains Mat. Zametki16 3 415-422
[5] English transl. in O. V. Epifanov 1974 Math. Notes16 3 837-841 · Zbl 0331.47026
[6] V. A. Tkačenko 1977 Equations of convolution type in spaces of analytic functionals Izv. Akad. Nauk SSSR Ser. Mat.41 2 378-392
[7] English transl. in V. A. Tkačenko 1977 Math. USSR-Izv.11 2 361-374 · Zbl 0378.45004
[8] O. V. Epifanov 1988 Convolution equation in the complex plane Investigations in operator theory Nauka, Ufa 48-58
[9] I. M. Mal’tsev 1994 On conditions for surjectivity of a convolution operator in a complex domain. I. Necessary conditions for surjectivity Izv. Vyssh. Uchebn. Zaved. Mat. 7 49-58 · Zbl 0936.47019
[10] English transl. in I. M. Mal’tsev 1994 Russian Math. (Iz. VUZ)38 7 47-58
[11] I. M. Mal’tsev 1994 On conditions for the surjectivity of a convolution operator in a complex domain. II. Sufficient conditions and criteria for surjectivity Izv. Vyssh. Uchebn. Zaved. Mat. 11 43-52 · Zbl 0970.47023
[12] English transl. in I. M. Mal’tsev 1994 Russian Math. (Iz. VUZ)38 11 40-49 · Zbl 0970.47023
[13] Yu. F. Korobeĭnik 1997 On surjectivity of the convolution operator in spaces of analytic functions Sibirsk. Mat. Zh.38 6 1308-1318 · Zbl 0944.47020
[14] English transl. in Yu. F. Korobeĭnik 1997 Siberian Math. J.38 6 1137-1145
[15] S. V. Znamenskiĭ and E. A. Znamenskaya 2001 Surjectivity of a convolution operator with a point support in the space of functions holomorphic on an arbitrary set in \(\mathbb C\) Dokl. Ross. Akad. Nauk376 5 590-592 · Zbl 1229.30020
[16] English transl. in S. V. Znamenskiĭ and E. A. Znamenskaya 2001 Dokl. Math.63 1 85-87
[17] B. A. Taylor, R. Meise and D. Vogt 1990 Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse Ann. Inst. Fourier (Grenoble)40 3 619-655 · Zbl 0703.46025
[18] K. Schwerdtfeger 1982 Faltungsoperatoren auf Räumen holomorpher und beliebig oft differenzierbarer Funktionen Thesis Düsseldorf Univ. · Zbl 0536.46014
[19] B. A. Taylor 1982 Linear extension operators for entire functions Michigan Math. J.29 2 185-197 · Zbl 0471.30014
[20] S. Momm 1992 Convex univalent functions and continuous linear right inverses J. Funct. Anal.103 1 85-103 · Zbl 0771.46016
[21] S. Momm 1994 Convolution equations on the analytic functions on convex domains in the plane Bull. Sci. Math., II. Sér.118 3 259-270 · Zbl 0819.46039
[22] M. Langenbruch 1994 Continuous linear right inverses for convolution operators in spaces of real analytic functions Studia Math.110 1 65-82 · Zbl 0824.35147
[23] S. N. Melikhov and S. Momm 1997 On the linear inverse from right operator for the convolution operator on the spaces of germs of analytical functions on convex compacts in \(\mathbb C\) Izv. Vyssh. Uchebn. Zaved. Math. 5 38-48 · Zbl 0906.46019
[24] English transl. in S. N. Melikhov and S. Momm 1997 Russian Math. (Iz. VUZ)41 5 35-48
[25] Yu. F. Korobeinik 1996 Right inverse for a convolution operator in space of germs of analytic functions on connected subsets of \(\mathbb C\) Mat. Sb.187 1 55-82
[26] English transl. in Yu. F. Korobeinik 1996 Sb. Math.187 1 53-80 · Zbl 0873.47022
[27] S. N. Melikhov and S. Momm 2000 Analytic solutions of convolution equations on convex sets with an obstacle in the boundary Math. Scand.86 2 293-319 · Zbl 0984.35047
[28] A. V. Abanin and Le Hai Khoi 2015 Linear continuous right inverse to convolution operator in spaces of holomorphic functions of polynomial growth Izv. Vyssh. Uchebn. Zaved. Math. 1 3-13 · Zbl 1319.30047
[29] English transl. in A. V. Abanin and Le Hai Khoi 2015 Russian Math. (Iz. VUZ)59 1 1-10 · Zbl 1319.30047
[30] U. V. Barkina and S. N. Melikhov 2014 On a solution operator for differential equations of infinite order on convex sets Vladikavkaz. Mat. Zh.16 4 27-40
[31] R. Meise and B. A. Taylor 1988 Each non-zero convolution operator on the entire functions admits a continuous linear right inverse Math. Z.197 1 139-152 · Zbl 0618.32014
[32] S. Momm 1994 Boundary behavior of extremal plurisubharmonic functions Acta Math.172 1 51-75 · Zbl 0802.32024
[33] S. N. Melikhov and S. Momm 1995 Solution operators for convolution equations on the germs of analytic functions on compact convex sets in \(\mathbb C^N\) Studia Math.117 1 79-99 · Zbl 0842.46051
[34] R. Meise, S. Momm and B. A. Taylor 1987 Splitting of slowly decreasing ideals in weighted algebras of entire functions Complex analysis II Lecture Notes in Math. 1276 Springer, Berlin 229-252
[35] M. Langenbruch and S. Momm 1992 Complemented submodules in weighted spaces of analytic functions Math. Nachr.157 263-276 · Zbl 0787.46034
[36] V. P. Palamodov 1968 The projective limit functor in the category of linear topological spaces Mat. Sb.75(117) 4 567-603 · Zbl 0175.41801
[37] English transl. in V. P. Palamodov 1968 Math. USSR-Sb.4 4 529-559
[38] V. P. Palamodov 1971 Homological methods in the theory of locally convex spaces Uspekhi Mat. Nauk26 1(157) 3-65
[39] English transl. in V. P. Palamodov 1971 Russian Math. Surveys26 1 1-64 · Zbl 0247.46070
[40] D. Vogt 1989 Topics on projective spectra of (LB)-spaces Advances in the theory of Fréchet spacesIstanbul 1988 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 287 Kluwer Acad. Publ., Dordrecht 11-27 · Zbl 0711.46006
[41] A. Martineau 1966 Sur la topologie des espaces de fonctions holomorphes Math. Ann.163 62-88 · Zbl 0138.38101
[42] B. A. Taylor 1971 On weighted polynomial approximation of entire functions Pacific J. Math.36 2 523-539 · Zbl 0211.14904
[43] H. H. Schaefer 1966 Topological vector spaces The Macmillan Co., New York, Collier-Macmillan Ltd., London ix+294 pp.
[44] Yu. F. Korobeĭnik 1968 On the solutions of certain functional equations in classes of functions analytic in convex domains Mat. Sb.75(117) 2 225-234 · Zbl 0164.10504
[45] English transl. in Yu. F. Korobeĭnik 1968 Math. USSR-Sb.4 2 203-211 · Zbl 0176.06104
[46] R. E. Edwards 1965 Functional analysis. Theory and applications Holt, Rinehart and Winston, New York-Toronto-London xiii+781 pp. · Zbl 0182.16101
[47] I. F. Krasičkov-Ternovskii (Krzsichkov-Ternovskii) 1972 Invariant subspaces of analytic functions. I. Spectral analysis on convex regions Mat. Sb.87(129) 4 459-489
[48] English transl. in I. F. Krasičkov-Ternovskii (Krzsichkov-Ternovskii) 1972 Math. USSR-Sb.16 4 471-500 · Zbl 0253.46041
[49] L. Ehrenpreis 1960 Solution of some problems of division. IV. Invertible and elliptic operators Amer. J. Math.82 3 522-588 · Zbl 0098.08401
[50] L. Ehrenpreis 1970 Fourier analysis in several complex variables Pure Appl. Math. 17 Wiley-Intersci. Publ. John Wiley & Sons, New York-London-Sydney xiii+506 pp. · Zbl 0195.10401
[51] S. Momm 1994 A division problem in the space of entire functions of exponential type Ark. Mat.32 1 213-236 · Zbl 0807.32001
[52] J. J. Kelleher and B. A. Taylor 1972 Closed ideals in locally convex algebras of analytic functions J. Reine Angew. Math.1972 255 190-209 · Zbl 0237.46052
[53] C. A. Berenstein and B. A. Taylor 1979 A new look at interpolation theory for entire functions of one variable Adv. in Math.33 2 109-143 · Zbl 0432.30028
[54] B. Ja. Levin 1956 Distribution of zeros of entire functions Gostekhizdat, Moscow 632 pp.
[55] English transl. B. Ja. Levin 1964 Transl. Math. Monogr. 5 Amer. Math. Soc., Providence, RI viii+493 pp.
[56] L. Hörmander 1966 An introduction to complex analysis in several variables D. Van Nostrand Co., Inc., Princeton, NJ-Toronto, ON-London x+208 pp. · Zbl 0138.06203
[57] R. Meise 1985 Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals J. Reine Angew. Math.1985 363 59-95 · Zbl 0574.46043
[58] R. Meise and D. Vogt 1997 Introduction to functional analysis, Transl. from the German Oxf. Grad. Texts Math. 2 The Clarendon Press, Oxford Univ. Press, New York x+437 pp.
[59] Yu. F. Korobeĭnik and S. N. Melikhov 1993 A continuous linear right inverse of the representation operator and applications to the convolution operators Sibirsk. Mat. Zh.34 1 70-84
[60] English transl. in Yu. F. Korobeĭnik and S. N. Melikhov 1993 Siberian Math. J.34 1 59-72 · Zbl 0833.47044
[61] G. M. Goluzin 1966 Geometric theory of functions of a complex variable Nauka, Moscow 2nd ed., 628 pp. · Zbl 0148.30603
[62] English transl. G. M. Goluzin 1969 Transl. Math. Monogr. 26 Amer. Math. Soc., Providence, RI vi+676 pp.
[63] S. Momm 1996 An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity J. Reine Angew. Math.1996 471 139-163 · Zbl 0848.31008
[64] S. Momm 1996 Extremal plurisubharmonic functions for convex bodies in \(\mathbb C^n\) Complex analysis, harmonic analysis and applicationsBordeaux 1995 Pitman Res. Notes Math. Ser. 347 Longman, Harlow 87-103 · Zbl 0851.31006
[65] S. N. Melikhov 2002 Convex conformal mappings and right inverses to the operator of representation by series of exponentials Geometric function theory, boundary value problems and their applicationsKazan’ 2002 Tr. Mat. Tsentra im. Lobachevskogo 14 Kazan’ Mathematical Society Publishing House, Kazan’ 213-227 · Zbl 1061.30017
[66] S. N. Melikhov and S. Momm 2011 On the expansions of analytic functions on convex locally closed sets in exponential series Vladikavkaz. Mat. Zh.13 1 44-58 · Zbl 1222.32003
[67] L. I. Ronkin 1971 Introduction to the theory of entire functions of several variables Nauka, Moscow 430 pp. · Zbl 0225.32001
[68] English transl. L. I. Ronkin 1974 Transl. Math. Monogr. 44 Amer. Math. Soc., Providence, RI vi+273 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.