# zbMATH — the first resource for mathematics

Analysis of mutual funds’ management styles: a modeling, ranking and visualizing approach. (English) Zbl 07252550
Summary: A method to rank mutual funds according to their investment style measured with respect to the returns of a reference portfolio (benchmark) is introduced. It is based on a style analysis model estimating a mutual fund portfolio composition as well as the benchmark one. Starting from such compositions, it computes a proximity measure based on the $$L_1$$ or $$L_2$$ norm to assess the similarity between each mutual fund portfolio returns and the benchmark returns as well as between the returns of each benchmark constituent and that of the corresponding mutual fund constituent. To this purpose the mean integrated absolute error and the mean integrated squared error are computed to derive both a global ranking of mutual fund management styles and partial rankings expressing the over- (under-) weighting of each portfolio constituent. A visual inspection of the results emphasizing main differences in management styles is provided, using a parallel coordinates plot. Since a modeling, a ranking and a visualizing approach are integrated, the method is named MoRaViA. From the practitioners’ point of view, it allows the identification of a specific management style for each mutual fund, discriminating active management funds from passive management ones. To evaluate the effectiveness of MoRaViA, many sets of artificial portfolios are generated and an application on a set of equity funds operating in the European market is presented.
##### MSC:
 62-XX Statistics
##### Software:
MoRaViA; R; ggplot2; compositions; corrgram; ViSta; gamair; GGobi; CASSATT
Full Text:
##### References:
 [1] Agarwal, V. and Naik, N. Y. 2000. Generalized style analysis of hedge funds. J. Asset Manage., 1(1): 93-109. [2] Aitchison, J. and Greenacre, M. 2002. Biplots of compositional data. J. R. Stat. Soc. Ser. C Appl. Stat, 51(4): 375-392. · Zbl 1111.62300 [3] Black, F. M., Jensen, M. and Scholes, M. 1972. “The capital asset pricing model: some empirical tests”. In Studies in the Theory of Capital Markets, Edited by: Jensen, M. New York, , USA: Praeger. [4] Blake, C. R. and Morey, M. R. 2000. Morningstar ratings and mutual fund performance. J. Financ. Quant. Anal., 35(3): 451-484. [5] Brown, S. and Goetzmann, W. 1997. Mutual funds style analysis. J. Financ. Econ., 43(3): 373-399. [6] Chan, L. K., Chen, H. L. and Lakonishok, J. 2002. On mutual fund investment styles. Rev. Financ. Stat., 15(5): 1407-1437. [7] Chen, C., Hardle, W. and Unwin, A. 2008. Handbook of Data Visualization, Series: Springer Handbooks of Computational Statistics XIV Edited by: Chen, C., Hardle, W. and Unwin, A. Berlin, Heidelberg: Springer. [8] Christopherson, J. A. 1995. Equity styles classifications. J. Portf. Manage., 21: 32-43. [9] Cook, D. and Swayne, D. F. 2007. Interactive and Dynamic Graphics for Data Analysis: With R and GGobi, Springer Series: Use R New York: Springer. · Zbl 1154.62006 [10] Fletcher, R. 2001. Practical Methods of Optimization, 2, UK London: John Wiley & Sons. [11] Friendly, M. 2002. Corrgrams: Exploratory displays for correlation matrices. Am. Stat., 56: 316-324. [12] Gill, P. E., Murray, W. and Wright, M. H. 1981. Practical Optimization, London, , UK: Academic Press. [13] Hardle, W. 1992. Applied Nonparametric Regression Cambridge University Press, , UK [14] Inselberg, A. 1998. Visual data mining with parallel coordinates. Comput. Stat., 53(1): 47-63. · Zbl 0922.62006 [15] Jones, M. C., Marron, J. S. and Sheather, S. J. 1996. A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc., 91(433): 401-407. · Zbl 0873.62040 [16] Judge, G. G. and Takayama, T. 1966. Inequality restrictions in regression analysis. J. Am. Stat. Assoc., 61(313): 166-181. · Zbl 0144.41702 [17] Kim, T. H., White, H. and Stone, D. 2005. Asymptotic and Bayesian confidence intervals for sharpe style weights. J. Financ. Econ., 3(3): 315-343. [18] Lobosco, A. and Di Bartolomeo, D. 1997. Approximating the confidence intervals for sharpe style weights. Financ. Analyst J., 53(4): 80-85. [19] Loftsgaarden, D. O. and Quesenberry, G. P. 1965. A nonparametric estimate of a multivariate density function. Ann. Math. Stat., 36(3): 1049-1051. · Zbl 0132.38905 [20] Marron, J. S. and Wand, M. P. 1992. Exact mean integrated squared error. Ann. Stat., 20(2): 712-736. · Zbl 0746.62040 [21] Nocedal, J. and Wright, S. J. 2006. Numerical Optimization, 2, Springer Series in Operations Research New York: Springer. [22] Politis, D. N., Romano, J. P. and Wolf, M. 1999. Subsampling, New York: Springer-Verlag. [23] R Development Core Team. 2009. A Language Environment for Statistical Computing, Vien, , Austria: R Foundation for Statistical Computing. Available at http://www.r-project.org [24] Sharpe, W. 1992. Asset allocation: management style and performance measurement. J. Portf. Manag., 18: 7-19. [25] Sharpe, W. 1998. Determining a fund’s effective asset mix. Invest. Manage. Rev., 2(6): 59-69. [26] Siegel, L. B. 2003. Benchmarks and Investment Management, Charlottesville, , USA: The Research Foundation of AIMR. [27] Ter Horst, J. K., Nijman, T. H. and De Roon, F. A. 2004. Evaluating style analysis. J. Empir. Financ., 11(1): 29-53. [28] Tierney, D. E. and Winston, K. 1991. Using generic benchmarks to present management styles. J. Portf. Manage, 17: 33-36. [29] Unwin, A., Theus, M. and Hofmann, H. 2006. Graphics of Large Data Sets, New York, , USA: Springer. · Zbl 1118.62003 [30] Unwin, A., Volinsky, C. and Winkler, S. 2003. Parallel coordinates for exploratory modelling analysis. Comput. Stat. Data Anal., 43(4): 553-564. · Zbl 1429.62042 [31] K.G. van den Boogaart, R. Tolosana, and B. Matevz, Compositions: Compositional Data Analysis, R package version 0.91-6, 2006; software available at http://www.stat.boogaart.de/compositions [32] Wand, M. P. and Devroye, L. 1993. How easy is a given density to estimate?. Comput. Stat. Data Anal., 16(3): 311-323. · Zbl 0937.62584 [33] Wegman, E. J. 1990. Hyperdimensional data analysis using parallel coordinates. J. Am.Stat. Assoc., 85(411): 664-675. [34] H. Wickham, ggplot2: An implementation of the Grammar of Graphics, R package version 0.6, 2008; software available at http://had.co.nz/ggplot2/ [35] S.N. Wood, Generalized Additive Models: An Introduction with R, Chapman and Hall/CRC, Boca Raton, Florida, 2006 · Zbl 1087.62082 [36] K. Wright, Corrgram: Plot a correlogram, R package version 0.1, 2006, available at http://cranz.aromachinandi.it/src/ contrib/Descriptions/corrgram.html [37] Young, F. W., Valero-Mora, P. M. and Friendly, M. 2006. Visual Statistics: Seeing Data with Dynamic Interactive Graphics, Wiley Series in Probability and Statistics Wiley-Interscience Hoboken, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.