×

Universal enveloping Poisson conformal algebras. (English) Zbl 1495.17040

Lie conformal algebras are useful tools for studying vertex operator algebras and their representations. The article under review established close relations between Poisson conformal algebras and representations of Lie conformal algebras. Using Gröbner-Shirshov basis theory, the article calculated explicitly Poisson conformal brackets on the associated graded conformal algebras of universal associative conformal envelopes of Virasoro conformal algebra and Neveu-Schwartz conformal superalgebra.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
17B63 Poisson algebras
16Z05 Computational aspects of associative rings (general theory)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bakalov, B., D’Andrea, A. and Kac, V. G., Theory of finite pseudoalgebras, Adv. Math.162 (2001) 1-140. · Zbl 1001.16021
[2] Bakalov, B., Kac, V. G. and Voronov, A., Cohomology of conformal algebras, Comm. Math. Phys.200 (1999) 561-589. · Zbl 0959.17018
[3] Beilinson, A. A. and Drinfeld, V. G., Chiral Algebras, , Vol. 51 (American Mathematical Society Providence, Ri, 2004). · Zbl 1138.17300
[4] Bokut, L. A., Fong, Y. and Ke, W.-F., GrÖbner-Shirshov bases and composition lemma for associative conformal algebras: An example, Contemp. Math.264 (2000) 63-90. · Zbl 1063.16031
[5] Bokut, L. A., Fong, Y. and Ke, W.-F., Composition-Diamond lemma for associative conformal algebras, J. Algebra272 (2004) 739-774. · Zbl 1108.17006
[6] Bokut’, L. A., Fong, Y., Ke, V.-F. and Kolesnikov, P. S., Gröbner and Gröbner-Shirshov bases in algebra, and conformal algebras, Fundam. Prikl. Mat.6(3) (2000) 669-706 (In Russian). · Zbl 0990.17007
[7] Fattori, D. and Kac, V. G., Classification of finite simple lie conformal superalgebras, J. Algebra258 (2002) 23-59. · Zbl 1050.17023
[8] Frenkel, E. and Ben-Zvi, D., Vertex Algebras and Algebraic Curves, 2nd ed., , Vol. 88 (American Mathematical Society, Providence, Ri, 2004). · Zbl 1106.17035
[9] Gel’Fand, I. M. and Dorfman, I. J., Hamiltonian operators and algebraic structures associated with them, Funktsional. Anal. I Prilozhen.13(4) (1979) 13-30 (In Russian). · Zbl 0428.58009
[10] Kac, V. G., Vertex Algebras for Beginners, 2nd Edn., , 10 (American Mathematical Society, Providence, Ri, 1998). · Zbl 0924.17023
[11] Kac, V. G., Classification of infinite dimensional simple linearly compact Lie superalgebras, Adv. Math.139(1) (1998) 1-55. · Zbl 0929.17026
[12] Kang, S.-J. and Lee, K.-H., GrÖbner-Shirshov bases for representation theory, J. Korean Math. Soc.37 (2000) 55-72. · Zbl 0979.16010
[13] Kolesnikov, P., Identities of conformal algebras and pseudoalgebras, Comm. Algebra34(6) (2006) 1965-1979. · Zbl 1144.17020
[14] Kolesnikov, P., Universally defined representations of conformal Lie superalgebras, J. Symbolic Comput.43(6-7) (2008) 406-421. · Zbl 1208.17022
[15] Kolesnikov, P., The Ado theorem for finite Lie conformal algebras with Levi decomposition, J. Algebra Appl.15(7) (2016) 1650130 (13 pp.). · Zbl 1395.17068
[16] Kolesnikov, P., Gröbner-Shirshov bases for associative conformal algebras with arbitrary locality function, In New Trends in Algebra and Combinatorics. Proc. of the 3rd Int. Cong. Algebra and Combinatorics, eds. Shum, K. P., Zelmanov, E., Kolesnikov, P. and Wong, A. (World Scientific, 2020), pp. 255-267, arxiv:1807.08428.
[17] Kolesnikov, P. S. and Kozlov, R. A., On the Hochschild cohomologies of associative conformal algebras with a finite faithful representation, Comm. Math. Phys.369(1) (2019) 351-370. · Zbl 1473.17071
[18] Ni, L. and Chen, Y.-Q., A new Composition-Diamond lemma for associative conformal algebras, J. Algebra Appl.16 (2017) 1750094-1-1750094-28. · Zbl 1407.17034
[19] Roitman, M., On free conformal and vertex algebras, J. Algebra217 (1999) 496-527. · Zbl 0951.17013
[20] Roitman, M., Universal enveloping conformal algebras, Selecta Math. (N.S.)6 (2000) 319-345. · Zbl 1048.17017
[21] Su, Y., Xia, C. and Xu, Y., Classification of quasifinite representations of a Lie algebra related to Block type, J. Algebra393 (2013) 71-78. · Zbl 1338.17012
[22] Xu, X., Quadratic conformal superalgebras, J. Algebra231(1) (2000) 1-38. · Zbl 1001.17024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.