×

A Dolbeault-Dirac spectral triple for quantum projective space. (English) Zbl 1466.46067

The authors study a general approach to spectral behaviour of the covariant Kähler structures. This approach is applied to the quantum projective space endowed with the Heckenberger-Kolb differential calculus.

MSC:

46L87 Noncommutative differential geometry

Keywords:

quantum plane
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. J. Baston and M. G. Eastwood, The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Oxford Science Publications. zbl 0726.58004; MR1038279 · Zbl 0726.58004
[2] E. J. Beggs and P. S. Smith, Noncommutative complex differential geometry, J. Geom. Phys., 72 (2013), pp. 7-33. DOI 10.1016/j.geomphys.2013.03.018; zbl 1286.32008; MR3073899 · Zbl 1286.32008
[3] E. J. Beggs and T. Brzezi\'{n}ski, Noncommutative differential operators, Sobolev spaces and the centre of a category, J. Pure Appl. Algebra, 218 (2014), pp. 1-17. DOI 10.1016/j.jpaa.2013.04.006; zbl 1279.32008; MR3120603; arxiv 1108.5047 · Zbl 1279.32008
[4] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkh\"auser Verlag, Basel, 2002. zbl 1027.17010; MR1898492 · Zbl 1027.17010
[5] T. Brzezi\'{n}ski and R. Wisbauer, Corings and comodules, vol. 309 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2003. zbl 1035.16030; MR2012570 · Zbl 1035.16030
[6] A. L. Carey and J. Phillips, Unbounded Fredholm modules and spectral flow, Canad. J. Math., 50 (1998), pp. 673-718. DOI 10.4153/CJM-1998-038-x; zbl 0915.46063; MR1638603 · Zbl 0915.46063
[7] A. L. Carey, J. Phillips, and A. Rennie, Spectral triples: examples and index theory, in Noncommutative geometry and physics: renormalisation, motives, index theory, ESI Lect. Math. Phys., Eur. Math. Soc., Z\"urich, 2011, pp. 175-265. zbl 1252.58004; MR2839056 · Zbl 1252.58004
[8] A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. zbl 0818.46076; MR1303779 · Zbl 0818.46076
[9] F. D’Andrea and L. D\c{a}browski, Dirac operators on quantum projective spaces, Comm. Math. Phys., 295 (2010), pp. 731-790. DOI 10.1007/s00220-010-0989-8; zbl 1190.58011; MR2600033; arxiv 0901.4735 · Zbl 1190.58011
[10] F. D’Andrea, L. D\c{a}browski, and G. Landi, The noncommutative geometry of the quantum projective plane, Rev. Math. Phys., 20 (2008), pp. 979-1006. DOI 10.1142/S0129055X08003493; zbl 1155.81024; MR2450892; arxiv 0712.3401 · Zbl 1155.81024
[11] F. D’Andrea and G. Landi, Geometry of quantum projective spaces, in Noncommutative geometry and Physics, vol. 3, 2013, pp. 373-416. zbl 1291.81188; MR3098599; arxiv 1203.0621 · Zbl 1291.81188
[12] B. Das, R. \'O Buachalla, and P. Somberg, Dolbeault-Dirac spectral triples on quantum homogeneous spaces. Preprint. arxiv math.QA/1903.07599
[13] L. D\c{a}browski and A. Sitarz, Dirac operator on the standard Podle\'s quantum sphere, in Noncommutative geometry and quantum groups (Warsaw, 2001), vol. 61 of Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2003, p. 49-58. zbl 1061.58004; MR2024421; arxiv math/0209048 · Zbl 1061.58004
[14] F. D\'iaz Garc\'ia, R. \'O Buachalla, and E. Wagner, A spectral triple for the rank \(2\) quantum quadric. In preparation
[15] M. S. Dijkhuizen and J. Stokman, Quantized flag manifolds and irreducible \(*\)-representations, Comm. Math. Phys. (2), 203 (1999), pp. 297-324. DOI 10.1007/s002200050613; zbl 0969.58003; MR1697598; arxiv math/9802086 · Zbl 0969.58003
[16] M. S. Dijkhuizen and T. H. Koornwinder, CQG algebras: a direct algebraic approach to compact quantum groups, Lett. Math. Phys., 32 (1994), pp. 315-330. DOI 10.1007/BF00761142; zbl 0861.17005; MR1310296; arxiv hep-th/9406042 · Zbl 0861.17005
[17] I. Forsyth, B. Mesland, and A. Rennie, Dense domains, symmetric operators and spectral triples, New York J. Math., 20 (2014), pp. 1001-1020. zbl 1319.46050; MR3291609; arxiv 1306.1580 · Zbl 1319.46050
[18] T. Friedrich, Dirac operators in Riemannian geometry, vol. 25 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2000. Translated from the 1997 German original by Andreas Nestke. zbl 0949.58032; MR1777332 · Zbl 0949.58032
[19] J. M. Gracia-Bond\'{i}a, J. C. V\'arilly, and H. Figueroa, Elements of noncommutative geometry, Birkh\"auser Advanced Texts: Basler Lehrb\"ucher. [Birkh\"auser Advanced Texts: Basel Textbooks], Birkh\"auser Boston, Inc., Boston, MA, 2001. zbl 0958.46039; MR1789831 · Zbl 0958.46039
[20] I. Heckenberger and S. Kolb, The locally finite part of the dual coalgebra of quantized irreducible flag manifolds, Proc. London Math. Soc. (3), 89 (2004), pp. 457-484. DOI 10.1112/S0024611504014777; zbl 1056.58006; MR2078702; arxiv math/0301244 · Zbl 1056.58006
[21] I. Heckenberger and S. Kolb, De Rham complex for quantized irreducible flag manifolds, J. Algebra, 305 (2006), pp. 704-741. DOI 10.1016/j.jalgebra.2006.02.001; zbl 1169.58301; MR2266849; arxiv math/0307402 · Zbl 1169.58301
[22] N. Higson and J. Roe, Analytic \(K\)-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. zbl 0968.46058; MR1817560 · Zbl 0968.46058
[23] D. Huybrechts, Complex geometry: an introduction, universitext, Springer-Verlag, 2005. DOI 10.1007/b137952; zbl 1055.14001; MR2093043 · Zbl 1055.14001
[24] A. Ikeda and Y. Taniguchi, Spectra and eigenforms of the Laplacian on \(S^n\) and \(P^n(\bf C)\), Osaka J. Math., 15 (1978), pp. 515-546. zbl 0392.53033; MR0510492 · Zbl 0392.53033
[25] M. Khalkhali, G. Landi, and W. D. van Suijlekom, Holomorphic structures on the quantum projective line, Int. Math. Res. Not. IMRN, (2011), pp. 851-884. DOI 10.1093/imrn/rnq097; zbl 1219.58002; MR2773332; arxiv 0907.0154 · Zbl 1219.58002
[26] M. Khalkhali and A. Moatadelro, Noncommutative complex geometry of the quantum projective space, J. Geom. Phys., 61 (2011), pp. 2436-2452. DOI 10.1016/j.geomphys.2011.08.004; zbl 1270.81114; MR2838520; arxiv 1105.0456 · Zbl 1270.81114
[27] A. Klimyk and K. Schm\"udgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer-Verlag, 1997. zbl 0891.17010; MR1492989 · Zbl 0891.17010
[28] A. W. Knapp and D. A. Vogan, Jr., Cohomological induction and unitary representations, vol. 45 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1995. zbl 0863.22011; MR1330919 · Zbl 0863.22011
[29] T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci., 41 (2005), pp. 497-549. DOI 10.2977/prims/1145475221; zbl 1085.22010; MR2153533 · Zbl 1085.22010
[30] K. Koike and I. Terada, Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math., 79 (1990), pp. 104-135. DOI 10.1016/0001-8708(90)90059-V; zbl 0698.22013; MR1031827 · Zbl 0698.22013
[31] U. Kr\"ahmer, Dirac operators on quantum flag manifolds, Lett. Math. Phys., 67 (2004), pp. 49-59. DOI 10.1023/B:MATH.0000027748.64886.23; zbl 1054.58005; MR2063019; arxiv math/0305071 · Zbl 1054.58005
[32] U. Kr\"ahmer and M. Tucker-Simmons, On the Dolbeault-Dirac operator of quantized symmetric spaces, Trans. London Math. Soc., 2 (2015), pp. 33-56. DOI 10.1112/tlms/tlv002; zbl 1331.58012; MR3355577; arxiv 1307.7106 · Zbl 1331.58012
[33] M. Kr\"amer, Sph\"arische Untergruppen in kompakten zusammenh\"angenden Liegruppen, Compositio Math., 38 (1979), pp. 129-153. zbl 0402.22006; MR0528837 · Zbl 0402.22006
[34] F. D\'iaz Garc\'ia, A. Krutov, R. \'O Buachalla, P. Somberg, and K. R. Strung, Positive line bundles over the irreducible quantum flag manifolds. arxiv math.QA/1912.08802
[35] J. Kustermans, G. J. Murphy, and L. Tuset, Quantum groups, differential calculi and the eigenvalues of the laplacian, Trans. Amer. Math. Soc., 357 (2005), pp. 4681-4717. DOI 10.1090/S0002-9947-05-03971-1; zbl 1082.58005; MR2165384; arxiv math/0111042 · Zbl 1082.58005
[36] V. Lakshmibai and N. Reshetikhin, Quantum deformations of flag and schubert schemes, C. R. Acad. Sci. Paris, 313 (1991), pp. 121-126. zbl 0753.17021; MR1121572 · Zbl 0753.17021
[37] P. Littelmann, Paths and root operators in representation theory, Ann. of Math., 142, pp. 499-525. DOI 10.2307/2118553; zbl 0858.17023; MR1356780 · Zbl 0858.17023
[38] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116 (1994), p. 329-346. DOI 10.1007/BF01231564; zbl 0805.17019; MR1253196 · Zbl 0805.17019
[39] S. Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995. zbl 0857.17009; MR1381692 · Zbl 0857.17009
[40] S. Majid, Noncommutative Riemannian and spin geometry of the standard \(q\)-sphere, Comm. Math. Phys., 256 (2005), pp. 255-285. DOI 10.1007/s00220-005-1295-8; zbl 1075.58004; MR2160795; arxiv math/0307351 · Zbl 1075.58004
[41] M. Matassa, K\"ahler structures on quantum irreducible flag manifolds, J. Geom. Phys., 145 (2019), 103477, 16 pp. DOI 10.1016/j.geomphys.2019.07.008; zbl 1428.81104; MR3983199; arxiv 1901.09544 · Zbl 1428.81104
[42] M. Matassa, Dolbeault-Dirac operators, quantum Clifford algebras and the Parthasarathy formula, Adv. Appl. Clifford Algebr., 27 (2017), pp. 1581-1609. DOI 10.1007/s00006-016-0730-6; zbl 1377.81054; MR3651531; arxiv 1606.01827 · Zbl 1377.81054
[43] M. Matassa, On the Dolbeault-Dirac operators on quantum projective spaces, J. Lie Theory, 28 (2018), pp. 211-244. zbl 1396.58006; MR3707732; arxiv 1507.01823 · Zbl 1396.58006
[44] M. Matassa, The Parthasarathy formula and a spectral triple for the quantum Lagrangian Grassmannian of rank two, Lett. Math. Phys., 109 (2019), pp. 1703-1734. DOI 10.1007/s11005-019-01168-w; zbl 07093539; MR3977571; arxiv 1810.06456 · Zbl 1512.58004
[45] U. Meyer, Projective quantum spaces, Lett. Math. Phys., 35 (1995), pp. 91-97. DOI 10.1007/BF00750759; zbl 0847.17014; MR1347872; arxiv hep-th/9410039 · Zbl 0847.17014
[46] S. Neshveyev and L. Tuset, The Dirac operator on compact quantum groups, J. Reine Angew. Math., 641 (2010), pp. 1-20. DOI 10.1515/CRELLE.2010.026; zbl 1218.58020; MR2643923; arxiv math/0703161 · Zbl 1218.58020
[47] R. \'O Buachalla, Quantum bundle description of quantum projective spaces, Comm. Math. Phys., 316 (2012), p. 345-373. DOI 10.1007/s00220-012-1577-x; zbl 1269.81066; MR2993919; arxiv 1105.1768 · Zbl 1269.81066
[48] R. \'O Buachalla, Noncommutative complex structures on quantum homogeneous spaces, J. Geom. Phys., 99 (2016), pp. 154-173. DOI 10.1016/j.geomphys.2015.10.003; zbl 1330.81130; MR3428362; arxiv 1108.2374 · Zbl 1330.81130
[49] R. \'O Buachalla, Noncommutative K\"ahler structures on quantum homogeneous spaces, Adv. Math., 322 (2017), pp. 892-939. DOI 10.1016/j.aim.2017.09.031; zbl 1432.58004; MR3720811; arxiv 1602.08484 · Zbl 1432.58004
[50] R. \'O Buachalla and C. Mrozinski, A Borel-Weil theorem for the quantum Grassmannians. Preprint arxiv math.QA/1611.07969
[51] R. \'O Buachalla, J. \v{S}\v{t}ovi\v{c}ek, and A.-C. van Roosmalen, A Kodaira vanishing theorem for noncommutative K\"ahler structures. Preprint, 2018. arxiv math.QA/1801.08125
[52] A. Pal, Induced representation and Frobenius reciprocity for compact quantum groups, Proc. Indian Acad. Sci. Math. Sci., 105 (1995), pp. 157-167. DOI 10.1007/BF02880362; zbl 0959.22004; MR1350475 · Zbl 0959.22004
[53] R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. (2), 96 (1972), pp. 1-30. DOI 10.2307/1970892; zbl 0249.22003; MR0318398 · Zbl 0249.22003
[54] N. Y. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz, 1 (1989), pp. 178-206. zbl0715.17015; MR1015339 · Zbl 0715.17015
[55] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, second ed., 1991. zbl 0867.46001; MR1157815 · Zbl 0867.46001
[56] J. T. Stafford, Noncommutative projective geometry, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 93-103. zbl 1057.14004; MR1957024; arxiv math/0304210 · Zbl 1057.14004
[57] M. Takeuchi, Relative Hopf modules - equivalences and freeness criteria, J. Algebra, 60 (1979), pp. 452-471. DOI 10.1016/0021-8693(79)90093-0; zbl 0492.16013; MR0549940 · Zbl 0492.16013
[58] D. A. Vogan, Jr., Representations of real reductive Lie groups, vol. 15 of Progress in Mathematics, Birkh\"auser, Boston, Mass., 1981. zbl 0469.22012; MR0632407 · Zbl 0469.22012
[59] A. Weil, Introduction \`a l’\'etude des vari\'et\'es k\"ahl\'eriennes, no. 1267 in Publications de l’Institut de Math\'ematique de l’Universit\'e de Nancago, VI., Hermann, Paris, 1958. zbl 0137.41103; MR0111056 · Zbl 0137.41103
[60] H. Weyl, The classical groups. Their invariants and representations, Princeton Landmarks in Mathematics, Princeton University Press, 1997. zbl 1024.20501; MR1488158 · Zbl 1024.20501
[61] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys., 111 (1987), pp. 613-665. DOI 10.1007/BF01219077; zbl 0627.58034; MR0901157 · Zbl 0627.58034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.