zbMATH — the first resource for mathematics

Some aspects of cosheaves on diffeological spaces. (English) Zbl 1448.18016
Summary: We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincaré groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of the D-topological structure. We also study quasi-cosheaves, defined by pre-cosheaves which respect the colimit over covering generating families, and prove that cosheaves are quasi-cosheaves. Finally, a so-called quasi-Čech homology with values in pre-cosheaves is established for diffeological spaces.
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
57P99 Generalized manifolds
58A40 Differential spaces
Full Text: Link
[1] Artin, M., Grothendieck, A., and Verdier, J.L., “Théorie des Topos et Cohomologie Étale des Schémas” (SGA4), Lecture Notes in Math., Springer-Verlag, 1972. · Zbl 0234.00007
[2] Baez, J.C. and Hoffnung, A.E.,Convenient categories of smooth spaces, Trans. Amer. Math. Soc. 363(11) (2011), 5789-5825. · Zbl 1237.58006
[3] Bredon, G.E.,Cosheaves and homology, Pacific J. Math. 25 (1968), 1-32. · Zbl 0157.30101
[4] Bredon, G.E., “Sheaf Theory”, Graduate Texts in Mathematics 170, Springer-Verlag, 1997. · Zbl 0874.55001
[5] Chen, K.T.,Iterated path integrals, Bull. Amer. Math. Soc. 83(5) (1977), 831-879. · Zbl 0389.58001
[6] Christensen, J.D., Sinnamon, J.G., and Wu, E.,The D-topology for diffeological spaces, Pacific J. Math. 272(1) (2014), 87-110. · Zbl 1311.57031
[7] Christensen, J.D. and Wu, E.,Tangent spaces and tangent bundles for diffeological spaces, Cah. Topol. Géom. Différ. Catég. 57(1) (2016), 3-50 (to appear: arXiv:1411.5425v2). · Zbl 1355.57023
[8] Curry, J.M., “Sheaves, Cosheaves and Applications”, Ph.D. Thesis, University of Pennsylvania, 2014.
[9] Dehghan Nezhad, A. and Ahmadi, A.,A novel approach to sheaves on diffeological spaces, Topology Appl. 263 (2019) 141-153. · Zbl 1420.18029
[10] Haraguchi, T., “A Homotopy Theory of Diffeological and Numerically Generated Spaces”, Ph.D. Thesis, Okayama University, 2013.
[11] Hector, G. and Macias-Virgos, E.,Diffeological groups, Res. Exp. Math. 25 (2002), 247-260. · Zbl 1018.58001
[12] Iglesias-Zemmour, P., “Fibrations Difféologiques et Homotopie”, Thése de Doctorat Es-sciences, L’ Université de Provence, 1985.
[13] Iglesias-Zemmour, P., “Diffeology”, Math. Surveys Monogr. 185, Amer. Math. Soc., 2013.
[14] Kashiwara, M. and Schapira, P., “Categories and Sheaves”, Grundlehren Math. Wiss. 332, Springer-Verlag, 2006. · Zbl 1118.18001
[15] Mac Lane, S., “Categories for the Working Mathematician”, Springer-Verlag, 1998. · Zbl 0906.18001
[16] Mac Lane, S. and Moerdijk, I., “Sheaves in Geometry and Logic: A First Introduction to Topos Theory”, Springer-Verlag, 1992. · Zbl 0822.18001
[17] May, J.P., “Concise Course in Algebraic Topology”, Chicago Lectures in Mathematics, University of Chicago Press, 1999. · Zbl 0923.55001
[18] Prasolov, A.V.,Cosheafification, Theory Appl. Categ. 31(38) (2016), 1134-1175. · Zbl 1373.18012
[19] Souriau, J.M.,Groupes différentiels, in Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math. 836 (1980), 91-128.
[20] Stacey, A.,Comparative smootheology, Theory Appl. Categ. 25(4) (2011), 64-117. · Zbl 1220.18013
[21] Wu, E., “A Homotopy Theory for Diffeological Spaces”, Ph.D. Thesis, University of Western Ontario, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.