×

zbMATH — the first resource for mathematics

Familles de branches de bifurcations dans les équations de Ginzburg- Landau. (Families of bifurcation branches in the Ginzburg-Landau equations). (French) Zbl 0726.34031
The main result of the paper is the proof that there exist an infinite number of nontrivial solution curves of Ginzburg-Landau equations. More precisely for every trivial solution satisfying a certain integral relation (condition of bifurcation) we have a family of solutions. Physically only the stable or metastable solutions are admissible and this imposes certain constraints on the strength of the external magnetic field.
Reviewer: L.Vazquez (Madrid)

MSC:
34C23 Bifurcation theory for ordinary differential equations
78A99 General topics in optics and electromagnetic theory
82D55 Statistical mechanics of superconductors
35Q60 PDEs in connection with optics and electromagnetic theory
35Q40 PDEs in connection with quantum mechanics
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] J. BLOT, Relation entre les grandeurs supraconductrices caractéristiques de l’aluminium massif et les champs de transition de films divisés, en fonction de leur épaisseur. Thèse soutenue à Rennes 1, 1987.
[2] C. BOLLEY, Bifurcations dans les équations de Ginzburg-Landau des matériauxsupraconducteurs soumis à un champ magnétique extérieur. Publications de l’E.N.S.M., 1988.
[3] C. BOLLEY, Modélisation du champ de retard à la condensation d’un supraconducteur par un problème de bifurcation, à paraître. Zbl0741.35085 · Zbl 0741.35085
[4] M. G. CRANDALL and P. H. RABINOWITZ, Bifurcation from Simple Eigenvalues, 1970. Zbl0219.46015 MR288640 · Zbl 0219.46015
[5] J. DIEUDONNÉ, Éléments d’analyse. Tome 1. Gauthier-Villars, Paris, 1968.
[6] J. DIXMIER, Topologie générale. PUF, Paris, 1981. Zbl0449.54001 MR637202 · Zbl 0449.54001
[7] B. DUGNOILLE, Étude théorique et expérimentale des propriétés magnétiques decouches minces supraconductrices de type I et de kappa faible. Thèse soutenue à Mons, 1978.
[8] V. L. GINZBURG, Soviet Physics JETP 7, 78, 1958. MR101069
[9] T. KATO, Perturbation Theory for Linear Operators. Springer-Verlag, n^\circ 132, 1976. Zbl0342.47009 MR407617 · Zbl 0342.47009
[10] F. KIKUCHI, An itérative Finite Element Scheme for Bifurcation Analysis of Semi-linear Elliptic Equation. Institute of Space Aeronautic Science. University of Tokyo. Report n^\circ 542, juin 1976.
[11] M. KRASNOSEL’SKII, Topological Methods in the Theory of Nonlinear Intégral Eq. Pergamon Press, 1964. · Zbl 0111.30303
[12] B. M. LEVITAN and I. S. SARGSJAN, Introduction to Spectral Theory : Selfadjoint Ordinary Diff. Equations. American Math. Soc. Zbl0302.47036 · Zbl 0302.47036
[13] Y. PELLAN, Étude de la métastabilité de la transition supraconductrice de films divisés d’Indium sous champ magnétique parallèle et perpendiculaire. Thèse soutenue à Rennes 1, 1987.
[14] P. H. RABINOWITZ, Some Global Results for Nonlinear Eigenvalue Problems. J.of Funct Anal, n^\circ 7, pp. 487-513, 1971. Zbl0212.16504 MR301587 · Zbl 0212.16504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.