zbMATH — the first resource for mathematics

Galois descent for higher Brauer groups. (English) Zbl 07260772
We say that the Tate conjecture in codimension \(m\) holds for a smooth variety \(X\) over a field \(k\) if the image of the cycle class map \[\text{CH}^m \left( \overline{X} \right) \otimes \mathbb{Q}_l \rightarrow H^{2m}_{\text{ét}} \left( \overline{X}, \mathbb{Q}_l(m) \right)\] coincides with the union \[\bigcup_{U} H^{2m}_{\text{ét}} \left( \overline{X}, \mathbb{Q}_l(m) \right)^U,\] where \(U\) ranges over the open subgroups of the absolute Galois group \(\text{Gal}\left( \overline{k} /k \right)\). The Tate conjecture for divisors (\(m=1\)) is equivalent to the finiteness of the \(l\)-primary torsion of the Brauer group \[\text{Br} \left( X \right)[l^\infty]^{\text{Gal}\left( \overline{k} /k \right)} \cong H^{2}_{\text{ét}} \left( \overline{X}, \mathbb{G}_m \right)[l^\infty]^{\text{Gal}\left( \overline{k} /k \right)}\] (see for instance [J. Tate, Adv. Stud. Pure Math. 3, 189–214 (1968); Sém. Bourbaki 1965/66, Exp. No. 306, 415–440 (1966; Zbl 0199.55604)] or [J. S. Milne, Ann. Math. (2) 102, 517–533 (1975; Zbl 0343.14005)]).
The definition of the Brauer group may be generalized to higher dimension by setting \(\text{Br}^m (X)\) to be the étale motivic cohomology group \(H^{2m+1}_L \left( X, \mathbb{Z} (m) \right)\). Suppose that \(k\) is a finitely generated field of characteristic zero. Analogously to the results for the Tate conjecture for divisors, it is proved in the present paper that the Tate conjecture in codimension \(m\) is equivalent to the finiteness of the \(l\)-primary torsion \(\text{Br}^m \left( \overline{X}\right) \left[l^\infty\right]^{\text{Gal}\left( \overline{k} /k \right)}\). After establishing preliminary results and background on higher Brauer groups in Sections 1 and 2, the proof of this statement is provided in Section 3.1 using similar methods to the case \(m=1\) as proved in [A. N. Skorobogatov and Y. G. Zarhin, J. Algebr. Geom. 17, No. 3, 481–502 (2008; Zbl 1157.14008)].
It is expected that the failure of Galois descent for (higher) Brauer classes is at worst finite. This finiteness was established in the case \(m=1\), over fields of characteristic \(0\) in [J.-L. Colliot-Thélène and A. N. Skorobogatov, J. Reine Angew. Math. 682, 141–165 (2013; Zbl 1317.14042)]. In the present paper, the finiteness is proved for higher Brauer groups. Let \(X\) be a smooth projective variety over a finitely generated field \(k\). Assume that \(k\) is of characteristic \(0\) or that \(X\) satisfies the standard conjectures (conjectures \(B\), \(C\), and \(D\) in [S. L. Kleiman, Dix Exposes Cohomologie Schemas, Advanced Studies Pure Math. 3, 359-386 (1968; Zbl 0198.25902)]). The author proves that the cokernel of the map \[\text{Br}^m \left(X\right) \left[ \tfrac1p \right] \rightarrow \text{Br}^m \left( \overline{X} \right)^{\text{Gal}\left( \overline{k}/k \right)} \left[ \tfrac1p \right]\] is finite, where \(p\) is the exponential characteristic of \(k\). The proof of this main result relies on the degeneracy of the Hochschild-Serre spectral sequence. Using the preliminary results established in Sections 1 and 2, the proof of this statement is given in Section 3.2.
14F20 Étale and other Grothendieck topologies and (co)homologies
14F22 Brauer groups of schemes
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)
Full Text: DOI
[1] André, Y., Pour une théorie inconditionnelle des motifs, Inst. Hautes Études Sci. Publ. Math., 83, 5-49 (1996) · Zbl 0874.14010
[2] Bloch, S., Algebraic cycles and higher K-theory, Adv. Math, 61, 3, 267-304 (1986) · Zbl 0608.14004
[3] Cadoret, A., Charles, F.: A remark on uniform boundedness for Brauer groups. arXiv:1801.07322
[4] Charles, F., Schnell, C.: Notes on absolute Hodge cycles. arxiv:1101.3647v1 · Zbl 1321.14009
[5] Colliot-Thélène, J-L; Raskind, W., K2-cohomology and the second Chow group, Math. Ann., 270, 165-199 (1985) · Zbl 0536.14004
[6] Colliot-Thélène, J-L; Skorobogatov, A., Descente galoisienne sur le groupe de Brauer, J. Reine Angew. Math., 682, 141-165 (2013) · Zbl 1317.14042
[7] Deligne, P., Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publications Math ématiques de l’IHES, 35, 1, 107-126 (1968) · Zbl 0159.22501
[8] Deligne, P., La conjecture de Weil II, Publications Mathématiques de l’IHÉS, 52, 137-252 (1980) · Zbl 0456.14014
[9] Deligne, P.; Dold, A.; Eckmann, B., Hodge cycles on abelian varieties (notes by J. S. Milne), Lecture Notes in Mathematics, 9-100 (1982), Berlin: Springer, Berlin
[10] Gabber, O., Sur la torsion dans la cohomologie l-adique d’une variétè, C. R. Acad. Sci. Paris Sér. I Math., 297, 3, 179-182 (1983) · Zbl 0574.14019
[11] Geisser, T.; Levine, M., The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math., 530, 55-103 (2001) · Zbl 1023.14003
[12] Kahn, B., Classes de cycles motiviques étales, Algebra Number Theory, 6, 1369-1407 (2012) · Zbl 1263.14011
[13] Kleiman, S., Algebraic Cycles and the Weil Conjectures, 359-386 (1968), Amsterdam: North-Holland, Amsterdam · Zbl 0198.25902
[14] Milne, J., Étale Cohomology (1980), Princeton: Princeton University Press, Princeton
[15] Moonen, B., A remark on the Tate conjecture, J. Algebr. Geom., 28, 599-603 (2019) · Zbl 1448.11100
[16] Rosenschon, A.; Srinivas, V., Étale motivic cohomology and algebraic cycles, J. Inst. Math. Jussieu, 15, 3, 511-537 (2016) · Zbl 1346.19004
[17] Skorobogatov, A.; Zarhin, Y., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebr. Geom., 17, 3, 481-502 (2008) · Zbl 1157.14008
[18] Tate, J., Conjectures on algebraic cycles in l-adic cohomology, Motives (Seattle, WA, 1991), 55, 71-83 (1994) · Zbl 0814.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.