×

zbMATH — the first resource for mathematics

Imaginary quadratic fields with class groups of 3-rank at least 2. (English) Zbl 07260774
Summary: In this short note, we construct a family of imaginary quadratic fields whose class group has 3-rank at least 2. We show that, for every large \(X\), there are \(\gg X^{\frac{1}{2} - \epsilon}\) such fields with the discriminant \(-D\) satisfying \(D \le X\).
MSC:
11R11 Quadratic extensions
11R29 Class numbers, class groups, discriminants
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Byeon, D., Imaginary quadratic fields with non-cyclic ideal class group, Ramanujan J., 11, 159-164 (2006) · Zbl 1161.11391
[2] Byeon, D.; Koh, E., Real quadratic fields with class number divisible by \(3\), Manuscr. Math., 111, 2, 261-263 (2003) · Zbl 1125.11060
[3] Chakraborty, K.; Murty, R., On the number of real quadratic fields with class number divisible by \(3\), Proc. AMS, 131, 1, 41-44 (2001) · Zbl 1024.11073
[4] Cohen, H., Lenstra, H.W.: Heuristics on Class Groups of Number Fields. Lecture Notes in Mathematics, vol. 1068, pp. 33-62. Springer, Berlin (1984) · Zbl 0558.12002
[5] Craig, A., A type of class group for imaginary quadratic fields, Acta Arith., 22, 449-459 (1973) · Zbl 0227.12003
[6] Craig, A.: A construction for irregular discriminants. Osaka Math. J. 14(2), 365-402 (1977); Corrigendum. Osaka Math. J. 15(2), 461 (1978) · Zbl 0366.12007
[7] Heath-Brown, DR, Counting Rational Points on Algebraic Varieties, Analytic Number Theory, 51-95 (2006), Berlin: Springer, Berlin · Zbl 1152.11027
[8] Heath-Brown, D.R.: Quadratic class numbers divisible by 3. Funct. Approx. Comment. Math. 37, 203-211 (2007); Corrigendum. Funct. Approx. Comment. Math. 43, 227 (2010) · Zbl 1140.11050
[9] Hooley, C.: On the power-free values of polynomials in two variables. In: Analytic Number Theory, pp. 235-266, Cambridge Univ. Press, Cambridge (2009) · Zbl 1226.11098
[10] Kishi, Y.; Miyake, K., Parametrization of the quadratic fields whose class numbers are divisible by three, J. Number Theory, 80, 209-217 (2000) · Zbl 0976.11050
[11] Levin, A., Yan, S., Wiljanen, L.: Quadratic fields with a class group of large \(3\)-rank (2019). arXiv preprint arXiv:1910.12276
[12] Luca, F.; Pacelli, A., Class groups of quadratic fields of \(3\)-rank at least \(2\): effective bounds, J. Number Theory, 128, 796-804 (2008) · Zbl 1167.11038
[13] Murty, R.: Exponents of class groups of quadratic fields. In: Topics in Number Theory. University Park, PA (1997), Math. Appl., vol. 467, pp. 229-239. Kluwer Academic, Dordrecht (1999) · Zbl 0993.11059
[14] Nagell, T., Über die Klassenzahl imaginar quadratischer Zahlkörper, Abh. Math. Semin. Univ. Hambg., 1, 140-150 (1922) · JFM 48.0170.03
[15] Soundararajan, K., Divisibility of class numbers of imaginary quadratic fields, J. Lond. Math. Soc., 61, 2, 681-690 (2000) · Zbl 1018.11054
[16] Weinberger, PJ, Real quadratic fields with class numbers divisible by \(n\), J. Number Theory, 5, 237-241 (1973) · Zbl 0287.12007
[17] Yamamoto, Y., On unramified Galois extensions of quadratic number fields, Osaka J. Math, 7, 57-76 (1970) · Zbl 0222.12003
[18] Yu, G., A note on the divisibility of class numbers of real quadratic fields, J. Number Theory, 97, 35-44 (2002) · Zbl 1036.11057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.