# zbMATH — the first resource for mathematics

Real zeros of random trigonometric polynomials with pairwise equal blocks of coefficients. (English) Zbl 1461.30027
The paper deals with a random trigonometric polynomial $$V_n=\sum_{j=0}^{\infty} a_j \cos(jx),$$ $$x\in (0, 2\pi).$$ Classical results state that if the coefficients $$a_j$$ are standard Gaussian i.i.d. random variables, then the expected value $$\mathbb{E}[N_n(0, 2\pi)] \sim \frac{2n}{\sqrt{3}}$$ as $$n\to \infty,$$ where $$N_n(0, 2\pi)$$ denotes the number of real zeros of $$V_n$$ in $$(0, 2\pi).$$ The main focus of the paper is the question on how many real zeros, compared with the case of independent coefficients, should be expected if a certain restriction is imposed upon the coefficients.
Let $$l\in \mathbb{N}$$ be a fixed number and $$n=2l m-1+r,$$ where $$m\in\mathbb{N},$$ and $$r \in \{0,1,\ldots, 2l-1\}.$$ The coefficients $$A=(a_j)_{j=0}^n$$ are divided into $$2m$$ blocks $$A_j=(a_{ l j}, a_{ l j+1}, \ldots, a_{ l j+l-1}), \ j=0, \ldots, 2m-1,$$ of the length $$l,$$ and the remaining coefficients $$\tilde{A}.$$ Assume that $$\bigcup_{j=0}^{m-1} A_{2j} \cup \tilde{A}$$ is a family of i.i.d. random variables with Gaussian distribution $$\mathcal{N}(0, \sigma^2),$$ and $$a_{l(2j+1)+k}=a_{2lj+k}$$ for any $$j=0, \ldots, m-1$$ and $$k=0, \ldots, l-1,$$ that is, $$A_{2j+1}=A_{2j}$$. The author proves that under these assumptions $$\mathbb{E}[N_n(0, 2\pi)] = \frac{2n}{\sqrt{3}}+\mathcal{O}(n^{4/5})$$, as $$n \to \infty.$$ In the case of only two equal blocks of coefficients, the author obtains the following asymptotic formula $$\mathbb{E}[N_n(0, 2\pi)] = \left(\frac{1}{2}+\frac{\sqrt{13}}{2\sqrt{3}}\right)n+\mathcal{O}(n^{4/5}),$$ as $$n \to \infty,$$ that is, in this case significantly more real zeros should be expected compared with those of the classical case.
##### MSC:
 30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral) 30C99 Geometric function theory 12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems) 26C10 Real polynomials: location of zeros
Full Text:
##### References:
  J. Angst, F. Dalmao, and G. Poly, “On the real zeros of random trigonometric polynomials with dependent coefficients”, Proc. Amer. Math. Soc. 147:1 (2019), 205-214. · Zbl 1406.26007  A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Academic Press, Orlando, FL, 1986. · Zbl 0615.60058  A. Bloch and G. Pólya, “On the Roots of Certain Algebraic Equations”, Proc. London Math. Soc. $$(2) 33$$:2 (1931), 102-114. · JFM 57.0128.03  J. B. Conrey, D. W. Farmer, and O. Imamoglu, “Palindromic random trigonometric polynomials”, Proc. Amer. Math. Soc. 137:5 (2009), 1835-1839. · Zbl 1161.60017  M. Das, “The average number of real zeros of a random trigonometric polynomial”, Proc. Cambridge Philos. Soc. 64 (1968), 721-729. · Zbl 0169.48902  J. E. A. Dunnage, “The number of real zeros of a random trigonometric polynomial”, Proc. London Math. Soc. $$(3) 16 (1966), 53-84$$. · Zbl 0141.15003  K. Farahmand, “On the average number of level crossings of a random trigonometric polynomial”, Ann. Probab. 18:3 (1990), 1403-1409. · Zbl 0708.60064  K. Farahmand, Topics in random polynomials, Pitman Research Notes in Mathematics Series 393, Longman, Harlow, 1998. · Zbl 0949.60010  K. Farahmand and T. Li, “Real zeros of three different cases of polynomials with random coefficients”, Rocky Mountain J. Math. 42:6 (2012), 1875-1892. · Zbl 1263.60049  H. Flasche, “Expected number of real roots of random trigonometric polynomials”, Stochastic Process. Appl. 127:12 (2017), 3928-3942. · Zbl 1377.60063  I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, 1980. · Zbl 0521.33001  I. A. Ibragimov and N. B. Maslova, “The mean number of real zeros of random polynomials, I: Coefficients with zero mean”, Teor. Verojatnost. i Primenen. 16 (1971), 229-248. · Zbl 0277.60051  M. Kac, “On the average number of real roots of a random algebraic equation, II”, Proc. London Math. Soc. $$(2) 50 (1949), 390-408$$. · Zbl 0033.14702  J. E. Littlewood and A. C. Offord, “On the Number of Real Roots of a Random Algebraic Equation”, J. London Math. Soc. 13:4 (1938), 288-295. · Zbl 0020.13604  J. E. Littlewood and A. C. Offord, “On the number of real roots of a random algebraic equation, II”, Proc. Camb. Philos. Soc. 35 (1939), 133-148. · Zbl 0021.03702  D. S. Lubinsky, I. E. Pritsker, and X. Xie, “Expected number of real zeros for random linear combinations of orthogonal polynomials”, Proc. Amer. Math. Soc. 144:4 (2016), 1631-1642. · Zbl 1337.30008  I. E. Pritsker and A. M. Yeager, “Zeros of polynomials with random coefficients”, J. Approx. Theory 189 (2015), 88-100. · Zbl 1309.26016  Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series 26, The Clarendon Press, Oxford University Press, 2002. · Zbl 1072.30006  N. Renganathan and M. Sambandham, “On the average number of real zeros of a random trigonometric polynomial with dependent coefficients, II”, Indian J. Pure Appl. Math. 15:9 (1984), 951-956. · Zbl 0553.60063  M. Sambandham, “On the number of real zeros of a random trigonometric polynomial”, Trans. Amer. Math. Soc. 238 (1978), 57-70. · Zbl 0379.60060  M. Sambandham and N. Renganathan, “On the number of real zeros of a random trigonometric polynomial: coefficients with nonzero mean”, J. Indian Math. Soc. $$($$ N.S.$$) 45$$:1-4 (1981), 193-203. · Zbl 0632.60063  J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.