×

zbMATH — the first resource for mathematics

Spatiotemporal dynamics of a diffusive predator-prey model with nonlocal effect and delay. (English) Zbl 1450.35051
Summary: In this paper, we discuss a diffusive predator-prey model with nonlocality and delay. Stability and bifurcation analysis suggest that the joint impacts of the nonlocal term and delay result in instability of the positive constant steady state. Moreover, steady state, Hopf and steady state-Hopf bifurcations and interactions of these bifurcations may occur under certain conditions. Normal forms of steady state, Hopf and steady state-Hopf bifurcations for a general reaction-diffusion model with nonlocal effects and delay are derived. In numerical simulations, spatially inhomogeneous steady states and periodic solutions and heteroclinic connections between these solutions are obtained.

MSC:
35B32 Bifurcations in context of PDEs
35K57 Reaction-diffusion equations
35K51 Initial-boundary value problems for second-order parabolic systems
35R10 Functional partial differential equations
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banerjee, M.; Banerjee, S., Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Math Biosci, 236, 1, 64-76 (2012) · Zbl 1375.92077
[2] Banerjee, M.; Volpert, V., Prey-predator model with a nonlocal consumption of prey, Chaos, 26, 8, 083120 (2016) · Zbl 1378.92080
[3] Banerjee, M.; Volpert, V., Spatio-temporal pattern formation in Rosenzweig-Macarthur model: Effect of nonlocal interactions, Ecol Complex, 30, SI, 2-10 (2017)
[4] Bayliss, A.; Volpert, V. A., Complex predator invasion waves in a Holling-Tanner model with nonlocal prey interaction, Physica D, 346, 37-58 (2017) · Zbl 1415.92144
[5] Beretta, E.; Kuang, Y., Convergence results in a well-known delayed predator-prey system, J Math Anal Appl, 204, 3, 840-853 (1996) · Zbl 0876.92021
[6] Britton, N. F., Aggregation and the competitive exclusion principle, J Theor Biol, 136, 1, 57-66 (1989)
[7] Chen, S.; Yu, J., Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discret Contin Dyn Syst, 38, 1, 43-62 (2018) · Zbl 1386.35200
[8] Chen, M.; Wu, R.; Liu, B.; Chen, L., Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point, Commun Nonlinear Sci Numer Simul, 77, 141-167 (2019)
[9] Faria, T., Normal forms and Hopf bifurcation for partial differential equations with delays, Trans Am Math Soc, 352, 5, 2217-2238 (2000) · Zbl 0955.35008
[10] Faria, T., Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J Math Anal Appl, 254, 2, 433-463 (2001) · Zbl 0973.35034
[11] Fuentes, M. A.; Kuperman, V. M.; Kenkre, M. N., Nonlocal interaction effects on pattern formation in population dynamics, Phys Rev Lett, 91, 15, 158104 (2003)
[12] Furter, J.; Grinfeld, M., Local vs. non-local interactions in population dynamics, J Math Biol, 27, 1, 65-80 (1989) · Zbl 0714.92012
[13] Genieys, S.; Bessonov, N.; Volpert, V., Mathematical model of evolutionary branching, Math Comput Model, 49, 11-12, 2109-2115 (2009) · Zbl 1171.92332
[14] Gourley, S. A.; Chaplain, M. A.J.; Davidson, F. A., Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation, Dynam Syst, 16, 2, 173-192 (2001) · Zbl 0988.35082
[15] Han, B.; Yang, Y., On a predator-prey reaction-diffusion model with nonlocal effects, Commun Nonlinear Sci Numer Simul, 46, 49-61 (2017)
[16] Jiang, W.; An, Q.; Shi, J., Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations, J Differ Equ, 268, 10, 6067-6102 (2020) · Zbl 1435.35043
[17] Kuznetsov, Y., Elements of applied bifurcation theory (second edition) (1998), Springer Verlag, New York
[18] Liu, X.; Zhang, T.; Meng, X.; Zhang, T., Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis, Physica A, 496, 446-460 (2018)
[19] Merchant, S. M.; Nagata, W., Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theor Popul Biol, 80, 4, 289-297 (2011) · Zbl 1323.92177
[20] Merchant, S. M.; Nagata, W., Selection and stability of wave trains behind predator invasions in a model with non-local prey competition, IMA J Appl Math, 80, 4, 1155-1177 (2015) · Zbl 1330.35475
[21] Ni, W.; Shi, J.; Wang, M., Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model, J Differ Equ, 264, 11, 6891-6932 (2018) · Zbl 1397.35124
[22] Pal, S.; Ghorai, S.; Banerjee, M., Analysis of a prey-predator model with non-local interaction in the prey population, Bull Math Biol, 80, 4, 906-925 (2018) · Zbl 1390.92117
[23] Peng, Y.; Ling, H., Pattern formation in a ratio-dependent predator-prey model with cross-diffusion, Appl Math Comput, 331, 307-318 (2018) · Zbl 1427.35126
[24] Ruan, S., On nonlinear dynamics of predator-prey models with discrete delay, Math Model Nat Phenom, 4, 2, 140-188 (2009) · Zbl 1172.34046
[25] Segal, B. L.; Volpert, V. A.; Bayliss, A., Pattern formation in a model of competing populations with nonlocal interactions, Physica D, 253, 12-22 (2013) · Zbl 1284.92094
[26] Shi Q, Shi J, Song Y. Effect of spatial average on the spatiotemporal pattern formation of reaction-diffusion systems. 2020. Submitted https://arxiv.org/abs/2001.11960.
[27] Sivakumar, M.; Balachandran, K.; Karuppiah, K., Bifurcation and spatiotemporal patterns of a density-dependent predator-prey model with Crowley-Martin functional response, Int J Biomath, 10, 6, 1750079 (2017) · Zbl 1376.92051
[28] Song, Y.; Jiang, H.; Yuan, Y., Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model, J Appl Anal Comput, 9, 3, 1132-1164 (2019)
[29] Song, Y.; Zhang, T.; Peng, Y., Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun Nonlinear Sci Numer Simul, 33, 229-258 (2016)
[30] Song, Y.; Wu, S.; Wang, H., Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J Differ Equ, 267, 11, 6316-6351 (2019) · Zbl 1423.35027
[31] Song Y, Shi Q. Stability and delay-induced non-homogeneous Hopf bifurcation in a diffusive delayed predator-prey model with spatial average. 2020. In preparation.
[32] Sun, G.; Zhang, J.; Song, L.; Jin, Z.; Li, B., Pattern formation of a spatial predator-prey system, Appl Math Comput, 218, 22, 11151-11162 (2012) · Zbl 1278.92041
[33] Tian, C.; Ling, Z.; Zhang, L., Nonlocal interaction driven pattern formation in a prey-predator model, Appl Math Comput, 308, 73-83 (2017) · Zbl 1411.35147
[34] Wang, J.; Wei, J.; Shi, J., Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J Differ Equ, 260, 4, 3495-3523 (2016) · Zbl 1332.35176
[35] Wu, S.; Song, Y., Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition, Nonlinear Anal-Real World Appl, 48, 12-39 (2019) · Zbl 1425.92167
[36] Xu, X.; Wei, J., Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion, Discrete Contin Dyn Syst-Ser B, 23, 2, 765-783 (2018) · Zbl 1441.35034
[37] Yi, F.; Wei, J.; Shi, J., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J Differ Equ, 246, 5, 1944-1977 (2009) · Zbl 1203.35030
[38] Zhang, T.; Liu, X.; Meng, X.; Zhang, T., Spatio-temporal dynamics near the steady state of a planktonic system, Comput Math Appl, 75, 12, 4490-4504 (2018) · Zbl 1417.92222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.