×

Muller boundary integral equations for solving generalized complex-frequency eigenvalue problem. (English) Zbl 1454.35064

Summary: The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the eigenvalue problem for the Muller boundary integral equations. It is proved that these problems are spectrally equivalent if a specially tailored eigenvalue problem does not have any solution.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P05 General topics in linear spectral theory for PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1972) · Zbl 0543.33001
[2] Byelobrov, V. O.; Ctyroky, J.; Benson, T. M.; Sauleau, R.; Altintas, A.; Nosich, A. I., Low-threshold lasing modes of infinite periodic chain of quantum wires, Opt. Lett., 35, 3634-3636 (2010) · doi:10.1364/OL.35.003634
[3] Byelobrov, V. O.; Benson, T. M.; Nosich, A. I., Binary grating of sub-wavelength silver and quantum wires as a photonic-plasmonic lasing platform with nanoscale elements, IEEE J. Sel. Top. Quantum Electron., 18, 1839-1846 (2012) · doi:10.1109/JSTQE.2012.2213586
[4] Boriskina, S. V.; Sewell, P.; Benson, T. M.; Nosich, A. I., Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization, J. Opt. Soc. Am. A, 21, 393-402 (2004) · doi:10.1364/JOSAA.21.000393
[5] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory (2013), Philadelphia: SIAM, Philadelphia · Zbl 1291.35003
[6] Heider, P., Computation of scattering resonances for dielectric resonators, Comput. Math. Appl., 60, 1620-1632 (2010) · Zbl 1202.78015 · doi:10.1016/j.camwa.2010.06.044
[7] E. Karchevskii and A. Nosich, ‘‘Methods of analytical regularization in the spectral theory of open waveguides,’’ in Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory 2014, pp. 39-45.
[8] Kartchevski, E. M.; Nosich, A. I.; Hanson, G. W., Mathematical analysis of the generalized natural modes of an inhomogeneous optical fiber, SIAM J. Appl. Math., 65, 2033-2048 (2005) · Zbl 1081.35067 · doi:10.1137/040604376
[9] Misawa, R.; Niino, K.; Nishimura, N., Boundary integral equations for calculating complex eigenvalues of transmission problems, SIAM J. Appl. Math., 77, 770-788 (2017) · Zbl 1365.35101 · doi:10.1137/16M1087436
[10] Muller, C., Foundations of the Mathematical Theory of Electromagnetic Waves (1969), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0181.57203
[11] Natarov, D. M.; Benson, T. M.; Nosich, A. I., Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell, Beilstein J. Nanotechnol., 10, 294-304 (2019) · doi:10.3762/bjnano.10.28
[12] Reichardt, H., Ausstrahlungsbedingungen für die wellengleihung, Abhandl. Math. Seminar Univ. Hamburg, 24, 41-53 (1960) · Zbl 0100.09501 · doi:10.1007/BF02942018
[13] O. V. Shapoval, K. Kobayashi, and A. I. Nosich, ‘‘Electromagnetic engineering of a single-mode nanolaser on a metal plasmonic strip placed into a circular quantum wire,’’ IEEE J. Sel. Top. Quantum Electron. 23, 1501609 (2017).
[14] Smotrova, E. I.; Nosich, A. I., Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity, Opt. Quantum Electron., 36, 213-221 (2004) · doi:10.1023/B:OQEL.0000015641.19947.9c
[15] Smotrova, E. I.; Tsvirkun, V.; Gozhyk, I.; Lafargue, C.; Ulysse, C.; Lebental, M.; Nosich, A. I., Spectra, thresholds, and modal fields of a kite-shaped microcavity laser, J. Opt. Soc. Am. B, 30, 1732-1742 (2013) · doi:10.1364/JOSAB.30.001732
[16] A. O. Spiridonov and E. M. Karchevskii, ‘‘Mathematical and numerical analysis of the spectral characteristics of dielectric microcavities with active regions,’’ in Proceedings of the International Conference on Days on Diffraction, 2016, pp. 390-395.
[17] Spiridonov, A. O.; Karchevskii, E. M.; Nosich, A. I., Symmetry accounting in the integral-equation analysis of lasing eigenvalue problems for two-dimensional optical microcavities, J. Opt. Soc. Am. B, 34, 1435-1443 (2017) · doi:10.1364/JOSAB.34.001435
[18] Spiridonov, A. O.; Karchevskii, E. M.; Nosich, A. I., Rigorous formulation of the lasing eigenvalue problem as a spectral problem for a fredholm operator function, Lobachevskii J. Math., 39, 1148-1157 (2018) · Zbl 1483.45003 · doi:10.1134/S1995080218080127
[19] Spiridonov, A. O.; Karchevskii, E. M.; Nosich, A. I., Mathematical and numerical modeling of on-threshold modes of 2-D microcavity lasers with piercing holes, Axioms, 8, 1-16 (2019) · Zbl 1432.78011 · doi:10.3390/axioms8030101
[20] Zolotukhina, A. S.; Spiridonov, A. O.; Karchevskii, E. M.; Nosich, A. I., Lasing modes of a microdisk with a ring gain area and of an active microring, Opt. Quantum Electron., 47, 3883-3891 (2015) · doi:10.1007/s11082-015-0240-0
[21] Zolotukhina, A. S.; Spiridonov, A. O.; Karchevskii, E. M.; Nosich, A. I., Electromagnetic analysis of optimal pumping of a microdisk laser with a ring electrode, Appl. Phys. B, 123, 32 (2017) · doi:10.1007/s00340-016-6625-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.