zbMATH — the first resource for mathematics

The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted spaces. (English) Zbl 0727.35106
Consider the stationary Navier-Stokes equations of the viscous incompressible fluid in an exterior domain of \({\mathbb{R}}^ 3\). The velocity is assumed to approximate a constant vector \(u_{\infty}\neq 0\) at infinity. Linearizing the Navier-Stokes equations we are led to the Oseen equations which we study in weighted Sobolev spaces. The weights are anisotropic and reflect the decay properties of the fundamental solution. The main tool is the method of hydrodynamical potentials demanding estimates of singular and weakly singular integral operators in anisotropically weighted spaces. Further we refer to a previous paper of the author about an elliptic model problem related to the Oseen equations. Proving imbedding theorems in anisotropically weighted Sobolev spaces we construct a solution of the Navier-Stokes equations for sufficiently small data by Banach’s fixed point theorem.

35Q30 Navier-Stokes equations
35Q35 PDEs in connection with fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
47H10 Fixed-point theorems
Full Text: DOI EuDML
[1] Adams, R.A.: Sobolev Spaces, New York: Academic Press 1975 · Zbl 0314.46030
[2] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math.17, 35–92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[3] Babenko, K.I.: On stationary solutions of the problem of flow past a body of a viscous incomporessible fluid. Math. USSR Sb.20, 1–25 (1973) · Zbl 0285.76009 · doi:10.1070/SM1973v020n01ABEH001823
[4] Bemelmans, J.: Eine Außenraumaufgabe für die instationären Navier-Stokes-Gleichungen. Math. Z.162, 145–173 (1978) · Zbl 0379.35053 · doi:10.1007/BF01215072
[5] Bemelmans, J.: Strömungen zäher Flüssigkeiten. Sonderforschungsbereich 72, Vorlesungsreihe No.2. Universität Bonn (1980) · Zbl 0484.76042
[6] Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes Rend. Semin. Mat. Univ. Padova31, 308–340 (1961) · Zbl 0116.18002
[7] Chang, I-D., Finn, R.: On the solutions of a class of equations occurring in continuum mechanics, with applications to the Stokes paradox. Arch. Ration. Mech. Anal.7, 388–401 (1961) · Zbl 0104.42401 · doi:10.1007/BF00250771
[8] Clark, D.C.: The vorticity at infinity for solutions of the stationary Navier-Stokes equations in exterior domains. Indiana Univ. Math. J.20, 633–654 (1970/71) · Zbl 0205.56806 · doi:10.1512/iumj.1971.20.20051
[9] Deuring, P., von Wahl, W., Weidemaier, P.: Das lineare Stokes-System in \(\mathbb{R}\)3. I. Vorlesungen über das Innenraumproblem. Bayreuther Math. Schr.27 (1988) · Zbl 0667.35059
[10] Deuring, P., von Wahl, W.: Das lineare Stokes-System in \(\mathbb{R}\)3. II. Das Außenraumproblem. Bayreuther Math. Schr.28, 1–109 (1989) · Zbl 0695.35147
[11] Farwig, R.: Das stationäre Außenraumproblem der Navier-Stokes-Gleichungen bei nichtverschwindender Anströmgeschwindigkeit in anisotrop gewichteten Sobolevräumen. SFB 256 preprint no.110 (Habilitationsschrift). University of Bonn (1990)
[12] Farwig, R.: A variational approach in weighted Sobolev spaces to the operator +/x 1 in exterior domains of \(\mathbb{R}\)3. Math. Z.210, 449–464 (1992) · Zbl 0756.35068 · doi:10.1007/BF02571807
[13] Faxén, H.: Fredholm’sche Integralgleichungen zu der Hydrodynamik zäher Flüssigkeiten I. Ark. Mat. Astr. Fys.21 A, No. 14 (1928/29) · JFM 55.1127.03
[14] Finn, R.: On the steady state solutions of the Navier-Stokes partial differential equations. Arch. Ration. Mech. Anal.3, 381–396 (1959) · Zbl 0104.42305 · doi:10.1007/BF00284188
[15] Finn, R.: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal.19, 363–406 (1965) · Zbl 0149.44606 · doi:10.1007/BF00253485
[16] Finn, R.: Mathematical questions relating to viscous fluid flow in an exterior domain. Rocky Mt. J. Math.3, 107–140 (1973) · Zbl 0261.35068 · doi:10.1216/RMJ-1973-3-1-107
[17] Fujita, H.: On the existence and regularity of the steady-state solutions of the Navier-Stokes equations. J. Fac. Sci. Univ. Tokyo9, 59–102 (1961) · Zbl 0111.38502
[18] Galdi, P.G., Simader, C.G.: Existence, uniqueness andL q-estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal.112, 291–318 (1990) · Zbl 0722.35065 · doi:10.1007/BF02384076
[19] García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. Amsterdam: North-Holland 1985 · Zbl 0578.46046
[20] Guirguis, G.H.: On the existence, uniqueness and regularity of the exterior Stokes problem in \(\mathbb{R}\)3. Commun. Partial Differ. Equations11, 567–594 (1986) · Zbl 0608.35056 · doi:10.1080/03605308608820437
[21] Guirguis, G.H., Gunzburger, M.D.: On the approximation of the exterior Stokes problem in three dimensions. RAIRO Modélisation Math. Anal. Numér.21, 445–464 (1987) · Zbl 0629.76036
[22] Heywood, J.G.: On uniqueness questions in the theory of viscous flow. Acta Math.136, 61–102 (1976) · Zbl 0347.76016 · doi:10.1007/BF02392043
[23] Kozono, H., Sohr, H.: On a new class of generalized solutions of the Stokes equations in exterior domains. (Preprint 1989) · Zbl 0770.35055
[24] Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. New York: Gordon & Breach 1969 · Zbl 0184.52603
[25] Leray, J.: Étude de diverses équations, intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl., IX. Sér.12, 1–82 (1933) · Zbl 0006.16702
[26] Maslennikova, V.N., Timoshin, M.A.: OnL p-theory of stationary Stokes flows past obstacles. Conference Abstracts EQUADIFF 7, Prag (1989) · Zbl 0850.76124
[27] Oseen, C.W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft 1927 · JFM 53.0773.02
[28] Sohr, H., Varnhorn, W.: On decay properties of the Stokes equations in exterior domains. In: Heywood, J.G., Masuda, K., Rautmann, R., Solonnikov, V.A. (eds.). The Navier-Stokes equations, theory and numerical methods. Proceedings, Oberwolfach 1988, (Lect. Notes Math., vol. 1431, pp. 134–151) Berlin Heidelberg New York: Springer 1990
[29] Specovius-Neugebauer, M.: Exterior Stokes problems and decay at infinity. Math. Meth. Appl. Sci.8, 351–367 (1986) · Zbl 0616.76033 · doi:10.1002/mma.1670080124
[30] Stein, E.M.: Note on singular integrals. Proc. Am. Math. Soc.8, 250–254 (1957) · Zbl 0077.27301 · doi:10.1090/S0002-9939-1957-0088606-8
[31] Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums. Math. Phys. Pap.3, 1 (1851) · doi:10.1017/CBO9780511702266.002
[32] Torchinsky, A.: Real-variable methods in harmonic analysis. Orlando: Academic Press 1986 · Zbl 0621.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.