×

zbMATH — the first resource for mathematics

Modelling compression waves with a large initial gradient in the Korteweg-de Vries hydrodynamics. (Russian. English summary) Zbl 07278474
Ufim. Mat. Zh. 9, No. 1, 42-54 (2017); translation in Ufa Math. J. 9, No. 1, 41-53 (2017).
Summary: We consider the Cauchy problem for the Korteweg-de Vries equation with a small parameter at the higher derivative and a large gradient of the initial function. By means of the numerical and analytic methods we show that the formal asymptotics obtained by renormalization is an asymptotic solution to the KdV equation. We obtain the graphs of the asymptotic solutions including the case of non-monotone initial data.
MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI MNR
References:
[1] Gurevich A. V., Pitaevskii L. P., “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF, 65:2 (1973), 590-604
[2] Gurevich A. V., Krylov A. L., El G. A., “Oprokidyvanie volny Rimana v dispersionnoi gidrodinamike”, Pisma v ZhETF, 54:2 (1991), 104-109
[3] Krylov A. L., Khodorovskii V. V., El G. A., “Evolyutsiya nemonotonnogo vozmuscheniya v gidrodinamike Kortevega-de Friza”, Pisma v ZhETF, 56:6 (1992), 325-329
[4] Mazur N. G., “Kvaziklassicheskaya asimptotika v metode obratnoi zadachi rasseyaniya dlya uravneniya KdF i reshenie modulyatsionnykh uravnenii Uizema”, Teor. i matem. fiz., 106:1 (1996), 44-61 · Zbl 0888.35098
[5] Khruslov E. Ya., “Asimptotika resheniya zadachi Koshi dlya uravneniya Kortevega-de Friza s nachalnymi dannymi tipa stupenki”, Matem. sb., 99(141):2 (1976), 261-281 · Zbl 0332.35022
[6] A. Cohen, “Solutions of the Korteweg-de Vries equation with steplike initial profile”, Comm. Partial Diff. Eq., 9:8 (1984), 751-806 · Zbl 0542.35077
[7] S. Venakides, “Long time asymptotics of the Korteweg-de Vries equation”, Transactions of AMS, 293:1 (1986), 411-419 · Zbl 0619.35084
[8] Suleimanov B. I., “O reshenii uravneniya Kortevega-de Vriza, voznikayuschego vblizi tochki oprokidyvaniya v zadachakh s maloi dispersiei”, Pisma v ZhETF, 58:11 (1993), 906-910
[9] T. Kappeler, “Solutions of the Korteweg-de Vries equation with steplike initial data”, J. Diff. Eq., 63:3 (1986), 306-331 · Zbl 0598.35118
[10] Bondareva I. N., “Uravnenie Kortevega-de Friza v klassakh rastuschikh funktsii s zadannoi asimptotikoi pri \(|x|\to\infty \)”, Matem. sb., 122(164):2(10) (1983), 131-141 · Zbl 0568.35083
[11] Zakharov S. V., “Renormalizatsiya v zadache Koshi dlya uravneniya Kortevega-de Friza”, Teor. i matem. fiz., 175:2 (2013), 173-177 · Zbl 1286.76024
[12] Teodorovich E. V., “Metod renormalizatsionnoi gruppy v zadachakh mekhaniki”, Prikl. Matem. Mekh., 68:2 (2004), 335-367 · Zbl 1104.76055
[13] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989
[14] Zakharov S. V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s dvumya malymi parametrami”, Dokl. Akad. Nauk, 422:6 (2008), 733-734 · Zbl 1184.35026
[15] Zakharov S. V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zhurn. vychisl. matem. i matem. fiziki, 50:4 (2010), 699-706 · Zbl 1224.35219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.