zbMATH — the first resource for mathematics

Ideas in the theory of random media. (English) Zbl 0728.73011
Summary: These lectures discuss the ideas of localization, intermittency, and random fluctuations in the theory of random media. These ideas are compared and contrasted with the older approach based on averaging. Within this framework, the topics discussed include: Anderson localization, turbulent diffusion and flows, periodic Schrödinger operators and averaging theory, longwave oscillations of elastic random media, stochastic differential equations, the spectral theory of Hamiltonians with (an infinite sequence of) wells, random Schrödinger operators, electrons in a random homogeneous field, influence of localization effects on the propagation of elastic waves, the Lyapunov spectrum (Lyapunov exponents), the Furstenberg and Oseledec theorems for an n-tuple of identically distributed unimodular matrices and their relation with the spectral theory of random Schrödinger or string operators, Rossby waves, averaging on random Schrödinger operators, percolation mechanisms, the moments method in the theory of sequences of random variables, the evolution of a magnetic field in the turbulent flow of a conducting fluid or plasma (the so-called kinematical dynamo problem), heat transmission in a randomly flowing fluid.

74A40 Random materials and composite materials
76W05 Magnetohydrodynamics and electrohydrodynamics
82D20 Statistical mechanical studies of solids
86A15 Seismology (including tsunami modeling), earthquakes
81P20 Stochastic mechanics (including stochastic electrodynamics)
Full Text: DOI
[1] Akanbajev, V.: Some problems of the theory of magnetic fields in random flows (Doctoral thesis) MGU, Moscow (in Russian) (1986)
[2] Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev.109, 1492-1503 (1958) · doi:10.1103/PhysRev.109.1492
[3] Anshelevich, V.V., Khanin, K.M. and Sinai, Ja.G.: Symmetrical random walks in random environments. Comm. Math. Phys.85, 449-470 (1982). · Zbl 0512.60058 · doi:10.1007/BF01208724
[4] Arnold, V.I. and Korkina, E.I.: Growth of magnetic field in three-dimensional incompressible stationary flow. Vestn. MGU, ser. 1, Math., Mech.3, 43-45 (in Russian) (1985)
[5] Arnold, L., Papanicolaou, G. and Wihstutz, V.: Asymptotic analysis of the random Lyapunov exponent and rotation number of the random oscillator and applications, SIAM, J. Appl. Math.46 (3) 427-450 (1986) · Zbl 0603.60051
[6] Bakhvalov, N.S. and Panasenko, G.R.: Averaging of Processes in Periodic Media. Moscow:Nauka (in Russian) (1984) · Zbl 0607.73009
[7] Beljaev, M.Ju.: Averaging description of the wave processes in the random media. Appl. Math. Mech.49 (4), 696-700 (1985)
[8] Beljaev, A.Ju.: On the Lyapunov exponent of one-dimensional wave equation with random coefficients. Vestn. MGU, ser. 1, Math., Mech.3 17-21 (in Russian) (1987).
[9] Berdichevsky, V.L.: Variational Principles of Mechanics of the Continuous Media. Moscow: Nauka (in Russian) (1983)
[10] Bogachev, L.V. and Molchanov, S.A.: Models of mean field in the theory of random media. Theor. Math. Phys.81 (2) 281-290 (in Russian) (1989) · Zbl 0698.60084 · doi:10.1007/BF01017726
[11] Braginsky, S.I.: On the theory of a hydromagnetic dynamo. Zh. Eksp. Teor. Fiz.47 2178-2193 (in Russian) (1964)
[12] Bulicheva, O.G. and Molchanov, S.A.: Averaging description of the random one-dimensional media. Vestn. MGU, ser. 1, Math., Mech.3 37-46 (in Russian) (1986).
[13] Dittrich, P., Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Mean magnetic field in renovating random flow. Astr. Nachr.305 (3) 119-125 (1984) · Zbl 0599.76137 · doi:10.1002/asna.2113050305
[14] Dichne, A.M.: Conductivity of two-phase system. Zh. Eksp. Teor. Fiz.7 110-116 (in Russian) (1970).
[15] Dynamical systems. In: Itogy nauki i techniki, fundamental directions,2 Moscow: VINITI (in Russian) (1985)
[16] Feller, W.: An Introduction to Probability Theory and its Applications. Vol. 2, New York, London, Sidney: John Wiley & Sons (1966). · Zbl 0138.10207
[17] Friedman, A.: Partial Differential Equations. New York:Holt, Rinehard and Winston. (1969). · Zbl 0224.35002
[18] Furstenberg, H.: Noncommuting random products. Trans. Amer. Math. Soc.108 (2) 377-428 (1969) · Zbl 0203.19102 · doi:10.1090/S0002-9947-1963-0163345-0
[19] Gikhman, I.I. and Skorokhod, A.V.: Theory of Random Processes, Vol. 1-3. Moscow: Nauka (in Russian) (1971-75)
[20] Goldsheid, I.Ja., Molchanov, S.A. and Pastur, L.A.: A pure point spectrum of the stochastic one-dimensional Schrödinger equation. Funct. Anal. Appl.11 1-10 (in Russian) (1977) · Zbl 0368.34015 · doi:10.1007/BF01135526
[21] Golytsina, A.G. and Molchanov, S.A.: Multidimensional model of rare scatterers. Dokl. Akad. Nauk S.S.S.R.283 1084-1086 (in Russian) (1985)
[22] Gordon, A.Ja.: On the continuous spectrum of one-dimensional Schrödinger operators.13 (3) 77-78 (in Russian) (1979)
[23] Gradshtein, I.S. and Ryzhik, I.M.: Tables of Integrals, Sums, Series, Products. Moscow: Fizmatgiz (in Russian) (1963) · Zbl 0102.24703
[24] Grenkova, L.N., Molchanov, S.A. and Sudarev, Ju.N.: On the basic states of one-dimensional disordered structures. Comm. Math. Phys.90 101-123 (1983) · Zbl 0517.60072 · doi:10.1007/BF01209389
[25] Griffits, J.: Systems of interacting cellautomats. Contemp. Math.41 57-64 (1986)
[26] Ibragimov, I.A. and Linnik, Ju.V.: Independent and Stationary Connected Random Variables. Moscow: Nauka (in Russian) (1965) · Zbl 0154.42201
[27] Jurinsky, V.V.: On wave propagation in one-dimensional random media. Preprint 9, Mathematical Institute Sib. Dep. Acad. of Sci. U.S.S.R. (in Russian) (1982)
[28] Kamenkovich, V.L. and Reznik, G.M.: Rossby waves. In: Physics of the Ocean, Vol. 2. Moscow: Nauka (in Russian) (1978)
[29] Kac, M.: Mathematical models of phase transitions. In: Stability and Phase Transitions. Moscow:Mir (in Russian) (1973)
[30] Kotani, S.: Lyapunov’s exponents and spectra for one-dimensional random Schrödinger operators. Contemp. Math.50 277-286 (1986) · Zbl 0587.60054
[31] Kotani, S.: On a inverse problem for series. Contemp. Math.41 267-280 (1985)
[32] Kozlov, S.M.: Averaging method and random walks in nonhomogeneous media. Usp. Math. Nauk40 (2) 61-120 (in Russian) (1985) · Zbl 0592.60054
[33] Kozlov, S.M. and Molchanov, S.A.: On conditions under which central limit theorem is applicable to random walks on lattices. Dokl. Akad. Nauk S.S.S.R.273 410-413 (in Russian) (1984) · Zbl 0603.60020
[34] Kozlov, S.M.: On the value of effective diffusion when the concentration of inclusions is small. First World Congress of the Bernoulli Society, Tashkent, Abstracts of Reports2 656 (in Russian) (1986) · Zbl 0622.58019
[35] Krause, F. and Rädler, K.H.: Meanfield Magnetohydrodynamics and Dynamo Theory. London:Pergamon Press (1980).
[36] Larmor, J.: How could a rotating body such as the Sun become a magnet? Rep. Brit. Sci. 159-160 (1919)
[37] Lifshitz, I.M., Azbel, M.Ja. and Kaganov, M.I.: Electronic Theory of Metals. Moscow: Nauka (in Russian) (1971)
[38] Lifshitz, I.M., Gredeskul, S.A. and Pastur, L.A. Introduction to the Theory of Disordered Media. Moscow:Nauka (in Russian) (1982)
[39] Malyshev, V.A. and Milnos, R.A.: Gibbs Random Fields. Moscow:Nauka (in Russian) (1985)
[40] Marchenko, V.A. and Khruslov, E.Ja.: The Boundary-Value Problems in a Domain with a Fine-Grain Boundary. Kijev:Naukova Dumka (in Russian) (1974) · Zbl 0289.35002
[41] Martinelli, F. and Scoppola, E.: Introduction to the mathematical theory of Anderson localization. Nota Interna871 Rome. · Zbl 0608.60094
[42] Menaguzzi, M., Frisch, V. and Pouquet, A.: Helical and nonhelical magnetic dynamo. Phys. Rev. Lett.47 1060-1064 (1981) · doi:10.1103/PhysRevLett.47.1060
[43] Menshikov, M.V., Molchanov, S.A. and Sidorenko, A.F.: Percolation theory and its application. In: Itogi nauki i techniki, probab. theory, math. stat. and cyb.24 53-110 (in Russian) (1986)
[44] Merkurjev, S.P. and Faddajev, L.D.: Quantum theory for several particle systems. Moscow:Nauka (in Russian) (1985)
[45] Michailov, A.S. and Uporov, I.V.: Critical effects in media with multiplication, decay and diffusion. Usp. Fiz. Nauk144 79-112 (in Russian) (1984) · doi:10.3367/UFNr.0144.198409c.0079
[46] Moffat, H.K.: Some developments in the theory of turbulance. J. Fluid Mech.106 27-47 (1981) · Zbl 0471.76061 · doi:10.1017/S002211208100150X
[47] Molchanov, S.A., Piterbarg, L.I. and Sokoloff, D.D.: On generation of the coarse-scale anomalies of ocean surface temperature by short-period atmospheric processes. Izv. Akad. Nauk. S.S.S.R., ser. Physics of Atmosphere and Ocean5 539-545 (in Russian) (1987)
[48] Molchanov, S.A. and Piterbarg, L.I.: Averaging in turbulent diffusion problems. In: Probability Theory and Random Processes 35-47 Kijev:Naukova Dumka (in Russian) (1987). · Zbl 0850.76281
[49] Molchanov, S.A. and Piterbarg, L.I.: Turbulent diffusion of gradients of admixtures. Dokl. Akad. Nauk S.S.S.R.293 (5) 1092-1096 (in Russian) (1986).
[50] Molchanov, S.A. Piterbarg, L.I., Ruzmaikin, A.A. and Sokoloff, D.D.: Variability of temperature field of the ocean surface. Dokl. Akad. Nauk S.S.S.R.283 1801-1803 (in Russian) (1985)
[51] Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Dynamo equations in a random short-term correlated velocity field. Magnitnaja gidrodinamika4 67-73 (in Russian) (1983)
[52] Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Dynamo theorem. Geophys. Astrophys. Fluid Dyn.30 242-259 (1984) · Zbl 0555.76092 · doi:10.1080/03091928408222852
[53] Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Explicitly solvable model of a hydromagnetic dynamo. Dokl. Akad. Nauk S.S.S.R.295 113-117 (in Russian) (1987)
[54] Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Kinematic dynamo in random flow. Usp. Fiz. Nauk145 593-628 (in Russian) (1985) · doi:10.3367/UFNr.0145.198504b.0593
[55] Molchanov, S.A. and Seide, H.: Spectral properties of the general Sturm-Liouville operator with random coefficients. Math. Nachr.109 57-78 (1982) · Zbl 0534.60058 · doi:10.1002/mana.19821090107
[56] Molchanov, S.A.: The structure of eigenfunctions of one-dimensional disordered structures. Math. U.S.S.R. Izv.12 (1973).
[57] Molchanov, S.A., Ruzmaikin, A.A., Sokoloff, D.D., and Zeldovich, Ja.B.: Diffusion and intermittency in non-linear random media. Proc. Acad. Sci. U.S.A.305 1095-1102 (1987)
[58] Monin, A.S. and Yaglom, A.M.: Statistical Hydromechanics, Vol. 2. Moscow:Nauka (in Russian) (1967)
[59] Mott, N.F.: Electrons in disordered structures. Advances in Physics (Phil. Mag. Suppl.)16 61-79 (1967)
[60] Novikov, V.G., Ruzmaikin, A.A. and Sokoloff, D.D.: Fast dynamo in a reflexively invariant random velocity field. Zh. Eksp. Teor. Fiz.85 902-918 (in Russian) (1985)
[61] Oseledets, V.I.: Multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc.19 197-231 (in Russian) (1968) · Zbl 0236.93034
[62] Pastur, L.A.: Spectral theory of the random self-adjoint operators. In Itogi nauki i techniki, ser. prob. theory, math. stat. cyb.25 3-67 (in Russian) (1987)
[63] Piterbarg, L.I.: Dynamics and forecast of coarse-scale anomalies of the ocean surface. Doctoral thesis, Institute of Oceanology Acad. Sci. U.S.S.R., Moscow (in Russian) (1987)
[64] Rayleigh, J.W.: On the influence of obstacles arranged in rectangular order upon the properties of a medium. Scientific Papers, Cambridge Univ. Press4 19-38 (1903)
[65] Reed, M. and Simon, B.: Methods of Modern Mathematical Physics. New York: Academic Press (1973-79).
[66] Sadovsky, M.A.: On geophysical media and seismical process models. In: Prediction of Earthquakes, Dushanbe-Moscow: Donish 268-273 (in Russian) (1983-84)
[67] Semenov, D.V.: Equations of 2nd moment for magnetic field with helicity. Vest. MGU, ser. Phys. 15-21 (in Russian) (1987)
[68] Sevastjanov, B.A.: Branching Processes. Moscow:Nauka (in Russian) (1971)
[69] Shklovsky, B.N. and Efros, A.L.: Electronic Properties of Legiered Semiconductors. Moscow:Nauka (in Russian) (1979)
[70] Simon, B.: Almost periodic Schrödinger operators. Ann. Phys. U.S.A.159 (1) 157-183 (1985) · Zbl 0595.35032 · doi:10.1016/0003-4916(85)90196-4
[71] Simon, B., Taylor, M. and Wolff, T.: Some rigorous results for the Anderson model. Phys. Rev. Lett.54 1589-1600 (1985) · doi:10.1103/PhysRevLett.54.1589
[72] Simon, B. and Souillard, B.: Franco-American Meeting on the mathematics on random and almost periodic potentials. J. Stat. Phys.36 (1-2) 273-288 (1984) · doi:10.1007/BF01015735
[73] Simon, B. and Wolff, T.: Singular continuous spectrum under rank one perturbation and localization for random hamiltonians. Comm. Pure Appl. Math.39 (1) 75-90 (1986) · Zbl 0609.47001 · doi:10.1002/cpa.3160390105
[74] Sinai, Ya.G.: Limit behaviour of the one-dimensional random walk in random media. Teorija verojatn. i prilozhen.27 (2) 247-258 (in Russian) (1982)
[75] Souillard, B.: Mathematical and physical properties of discrete and continuous random Schrödinger operators: a review. Chaotic Behav. Quantum Syst.: Theory and Appl. Proc. NATO Adv. Res. Workshop Quantum Chaos, Como, 20-25 June 1983. New York, London:Plenum 1-10.
[76] Stratonovich, R.L.: Conditional Markov Processes. Moscow:Izd. MGU (in Russian) (1986) · Zbl 0216.47203
[77] Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc.A.20 (1921) · JFM 48.0961.01
[78] Tutubalin, V.N.: Central limit theorem for products of random matrices and some of its applications. Sympos. Math.21 101-116 (1977) · Zbl 0375.60029
[79] Virtser, A.D.: On matrix and operator products. Teor. Verojatn. Prilozhen.24 (2) 360-370 (1979)
[80] Vishik, M.M.: Periodic dynamo. Vichislytelnaja seimologija Moscow:Nauka19 125-186 (1986)
[81] Zeldovich, Ja.B., Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Intermittent passive fields in random media. Zh. Eksp. Teor. Fiz.89 (6) 2061-2072 (in Russian) (1985)
[82] Zeldovich, Ja.B., Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Moments and intermittency in random media. Usp. Mat. Nauk41 (4) (in Russian) (1986).
[83] Zeldovich, Ja.B., Molchanov, S.A., Ruzmaikin, A.A. and Sokoloff, D.D.: Intermittency in random media. Usp. Fiz. Nauk152 (1) 3-32 (1987) · doi:10.3367/UFNr.0152.198705a.0003
[84] Zeldovich, Ja.B., Molchanov, S.A., Sokoloff, D.D., and Ruzmaikin, A.A.: Generating, diffusion, intermittency in random fields. Soviet Scientific Review in Mathematical Physics. London:Gordon and Breach7 1-120 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.