zbMATH — the first resource for mathematics

Image-based material characterization of complex microarchitectured additively manufactured structures. (English) Zbl 07283118
Summary: Significant developments in the field of additive manufacturing (AM) allowed the fabrication of complex microarchitectured components with varying porosity across different scales. However, due to the high complexity of this process, the final parts can exhibit significant variations in the nominal geometry. Computed tomographic images of 3D printed components provide extensive information about these microstructural variations, such as process-induced porosity, surface roughness, and other undesired morphological discrepancies. Yet, techniques to incorporate these imperfect AM geometries into the numerical material characterization analysis are computationally demanding. In this contribution, an efficient image-to-material-characterization framework using the high-order parallel Finite Cell Method is proposed. In this way, a flexible non-geometry-conforming discretization facilitates mesh generation for very complex microstructures at hand and allows a direct analysis of the images stemming from CT-scans. Numerical examples including a comparison to the experiments illustrate the potential of the proposed framework in the field of additive manufacturing product simulation.
65-XX Numerical analysis
74-XX Mechanics of deformable solids
Full Text: DOI
[1] Kollmannsberger, S.; Rank, E.; Auricchio, F.; Steinmann, P., Simulation for additive manufacturing, Comput. Math. Appl., 78, 7, 2167 (2019) · Zbl 07260060
[2] Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T.Q.; Hui, D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites B, 143, 172-196 (2018)
[3] Gupta, N.; Weber, C.; Newsome, S., Additive Manufacturing: Status and Opportunities (2012), Science and Technology Policy Institute: Science and Technology Policy Institute Washington
[4] Delgado, J.; Ciurana, J.; Rodríguez, C. A., Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials, Int. J. Adv. Manuf. Technol., 60, 5, 601-610 (2012)
[5] Fox, J. C.; Moylan, S. P.; Lane, B. M., Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing, Procedia CIRP, 45, 131-134 (2016)
[6] Spierings, A. B.; Herres, N.; Levy, G., Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts, Rapid Prototyp. J., 17, 3, 195-202 (2011)
[7] Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B., Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf., 1-4, 87-98 (2014)
[8] Kasperovich, G.; Haubrich, J.; Gussone, J.; Requena, G., Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting, Mater. Des., 105, 160-170 (2016)
[9] Zhang, B.; Li, Y.; Bai, Q., Defect formation mechanisms in selective laser melting: A review, Chin. J. Mech. Eng., 30, 3, 515-527 (2017)
[10] Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M., SLM lattice structures: Properties, performance, applications and challenges, Mater. Des., 183, Article 108137 pp. (2019)
[11] Rahman Rashid, R. A.; Mallavarapu, J.; Palanisamy, S.; Masood, S. H., A comparative study of flexural properties of additively manufactured aluminium lattice structures, Mater. Today: Proc., 4, 8, 8597-8604 (2017)
[12] Tsopanos, S.; Mines, R.a. W.; McKown, S.; Shen, Y.; Cantwell, W. J.; Brooks, W.; Sutcliffe, C. J., The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, J. Manuf. Sci. Eng., 132, 4 (2010)
[13] Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C., Additive manufacturing of metals, Acta Mater., 117, 371-392 (2016)
[14] Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R., Polymers for 3D printing and customized additive manufacturing, Chem. Rev., 117, 15, 10212-10290 (2017)
[15] Simonelli, M.; Tse, Y. Y.; Tuck, C., Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V, Mater. Sci. Eng. A, 616, 1-11 (2014)
[16] Wycisk, E.; Solbach, A.; Siddique, S.; Herzog, D.; Walther, F.; Emmelmann, C., Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties, Physics Procedia, 56, 371-378 (2014)
[17] Gong, H.; Rafi, K.; Gu, H.; Janaki Ram, G. D.; Starr, T.; Stucker, B., Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting, Mater. Des., 86, 545-554 (2015)
[18] Dallago, M.; Winiarski, B.; Zanini, F.; Carmignato, S.; Benedetti, M., On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via selective laser melting, Int. J. Fatigue, 124, 348-360 (2019)
[19] Dong, Z.; Liu, Y.; Li, W.; Liang, J., Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices, J. Alloys Compd., 791, 490-500 (2019)
[20] Liu, L.; Kamm, P.; García-Moreno, F.; Banhart, J.; Pasini, D., Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by selective laser melting, J. Mech. Phys. Solids, 107, 160-184 (2017)
[21] Pasini, D.; Guest, J. K., Imperfect architected materials: Mechanics and topology optimization, MRS Bull., 44, 10, 766-772 (2019)
[22] Düster, A.; Rank, E.; Szabó, B. A., The p-version of the finite element method and finite cell methods, (Stein, E.; Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics, Vol. 2 (2017), John Wiley & Sons: John Wiley & Sons Chichester, West Sussex), 1-35
[23] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 45-48, 3768-3782 (2008) · Zbl 1194.74517
[24] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 1, 121-133 (2007) · Zbl 1162.74506
[25] Rank, E.; Ruess, M.; Kollmannsberger, S.; Schillinger, D.; Düster, A., Geometric modeling, isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg., 249-252, 104-115 (2012) · Zbl 1348.74340
[26] Wassermann, B.; Kollmannsberger, S.; Bog, T.; Rank, E., From geometric design to numerical analysis: A direct approach using the finite cell method on constructive solid geometry, Comput. Math. Appl., 74, 7, 1703-1726 (2017) · Zbl 1410.65460
[27] Wassermann, B.; Kollmannsberger, S.; Yin, S.; Kudela, L.; Rank, E., Integrating CAD and numerical analysis: ‘Dirty geometry’ handling using the finite cell method, Comput. Methods Appl. Mech. Engrg., 351, 808-835 (2019) · Zbl 1441.65024
[28] Yang, Z.; Kollmannsberger, S.; Düster, A.; Ruess, M.; Garcia, E. G.; Burgkart, R.; Rank, E., Non-standard bone simulation: Interactive numerical analysis by computational steering, Comput. Vis. Sci., 14, 5, 207-216 (2012)
[29] Yang, Z.; Ruess, M.; Kollmannsberger, S.; Düster, A.; Rank, E., An efficient integration technique for the voxel-based finite cell method, Internat. J. Numer. Methods Engrg., 91, 5, 457-471 (2012)
[30] Yosibash, Z.; Trabelsi, N.; Milgrom, C., Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations, J. Biomech., 40, 16, 3688-3699 (2007)
[31] Jomo, J.; Zander, N.; Elhaddad, M.; Özcan, A. I.; Kollmannsberger, S.; Mundani, R.-P.; Rank, E., Parallelization of the multi-level hp-adaptive finite cell method, Comput. Math. Appl., 74, 1, 126-142 (2017) · Zbl 1375.65151
[32] Jomo, J. N.; de Prenter, F.; Elhaddad, M.; D’Angella, D.; Verhoosel, C. V.; Kollmannsberger, S.; Kirschke, J. S.; Nübel, V.; van Brummelen, E. H.; Rank, E., Robust and parallel scalable iterative solutions for large-scale finite cell analyses, Finite Elem. Anal. Des., 163, 14-30 (2019)
[33] Burstedde, C.; Wilcox, L.; Ghattas, O., P4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[34] de Prenter, F.; Verhoosel, C. V.; van Zwieten, G. J.; van Brummelen, E. H., Condition number analysis and preconditioning of the finite cell method, Comput. Methods Appl. Mech. Engrg., 316, Supplement C, 297-327 (2017) · Zbl 1439.65137
[35] Boas, F. E.; Fleischmann, D., CT artifacts: Causes and reduction techniques, Imaging Med., 4, 2, 229-240 (2012)
[36] Boas, F. E.; Fleischmann, D., Evaluation of two iterative techniques for reducing metal artifacts in computed tomography, Radiology, 259, 3, 894-902 (2011)
[37] Man, B. D.; Nuyts, J.; Dupont, P.; Marchal, G.; Suetens, P., Metal streak artifacts in X-ray computed tomography: A simulation study, (1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), Vol. 3 (1998)), 1860-1865
[38] Kalender, W. A.; Hebel, R.; Ebersberger, J., Reduction of CT artifacts caused by metallic implants, Radiology, 164, 2, 576-577 (1987)
[39] Prell, D.; Kyriakou, Y.; Kachelrie, M.; Kalender, W. A., Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach, Investig. Radiol., 45, 11, 747-754 (2010)
[40] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., ImageNet classification with deep convolutional neural networks, Commun. ACM, 60, 6, 84-90 (2017)
[41] Ronneberger, O.; Fischer, P.; Brox, T., U-Net: Convolutional networks for biomedical image segmentation (2015), arXiv:1505.04597 [cs]
[42] Chollet, F., Keras (2015), GitHub, https://github.com/fchollet/keras
[43] Kingma, D. P.; Ba, J., Adam: A method for stochastic optimization (2014), arXiv:1412.6980 [cs]
[44] Gross, D.; Seelig, T., (Fracture Mechanics: With an Introduction to Micromechanics. Fracture Mechanics: With an Introduction to Micromechanics, Mechanical Engineering Series (2017), Springer International Publishing) · Zbl 1110.74001
[45] Bathe, K. J., Finite Element Procedures (2007), Prentice Hall: Prentice Hall New Jersey, 16197
[46] Suquet, P. M., Elements of homogenization for inelastic solid mechanics, (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media (1987), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 193-198 · Zbl 0645.73012
[47] Nemat-Nasser, S.; Hori, M.; Achenbach, J., (Micromechanics: Overall Properties of Heterogeneous Materials. Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland Series in Applied Mathematics and Mechanics (2013), Elsevier Science)
[48] Fritzen, F.; Forest, S.; Kondo, D.; Böhlke, T., Computational homogenization of porous materials of Green type, Comput. Mech., 52, 1, 121-134 (2013) · Zbl 1309.74061
[49] Hill, R., Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804
[50] Pahr, D. H.; Zysset, P. K., Influence of boundary conditions on computed apparent elastic properties of cancellous bone, Biomech. Model. Mechanobiol., 7, 6, 463-476 (2008)
[51] Hazanov, S.; Huet, C., Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, J. Mech. Phys. Solids, 42, 12, 1995-2011 (1994) · Zbl 0821.73005
[52] Pahr, D. H., Experimental and Numerical Investigations of Perforated FRP-Laminates (2003), VDI-Verlag
[53] (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media: Lectures Delivered at the CISM International Center for Mechanical Sciences, Udine, Italy, July 1-5, 1985. Homogenization Techniques for Composite Media: Lectures Delivered at the CISM International Center for Mechanical Sciences, Udine, Italy, July 1-5, 1985, Lecture Notes in Physics (1987), Springer-Verlag: Springer-Verlag Berlin Heidelberg) · Zbl 0619.00027
[54] Nguyen, V.-D.; Béchet, E.; Geuzaine, C.; Noels, L., Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation, Comput. Mater. Sci., 55, 390-406 (2012)
[55] Kudela, L.; Zander, N.; Kollmannsberger, S.; Rank, E., Smart octrees: accurately integrating discontinuous functions in 3D, Comput. Methods Appl. Mech. Engrg., 306, 406-426 (2016) · Zbl 1436.65022
[56] Gusev, A. A., Representative volume element size for elastic composites: A numerical study, J. Mech. Phys. Solids, 45, 9, 1449-1459 (1997) · Zbl 0977.74512
[57] Michel, J. C.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach, Comput. Methods Appl. Mech. Engrg., 172, 1, 109-143 (1999) · Zbl 0964.74054
[58] Zander, N.; Bog, T.; Kollmannsberger, S.; Schillinger, D.; Rank, E., Multi-level hp-adaptivity: High-order mesh adaptivity without the difficulties of constraining hanging nodes, Comput. Mech., 55, 3, 499-517 (2015) · Zbl 1311.74133
[59] Zander, N.; Bog, T.; Elhaddad, M.; Frischmann, F.; Kollmannsberger, S.; Rank, E., The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes, Comput. Methods Appl. Mech. Engrg., 310, 252-277 (2016) · Zbl 1439.65201
[60] Zander, N., Multi-Level Hp-FEM: Dynamically Changing High-Order Mesh Refinement with Arbitrary Hanging Nodes (2017), Technische Universität München: Technische Universität München München, (Ph.D. Thesis)
[61] Willis, J., Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 3, 185-202 (1977) · Zbl 0363.73014
[62] Fan, T., Concrete Microstructure Homogenization Technique with Application to Model Concrete Serviceability (2012), The University of New Mexico Albuquerque: The University of New Mexico Albuquerque New Mexico, (Ph.D. Thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.