zbMATH — the first resource for mathematics

Embeddings between weighted Cesàro function spaces. (English) Zbl 07284493
Summary: In this paper, we give the characterization of the embeddings between weighted Ces‘aro function spaces. The proof is based on the duality technique, which reduces this problem to the characterizations of some direct and reverse Hardy-type inequalities and iterated Hardy-type inequalities.
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
26D10 Inequalities involving derivatives and differential and integral operators
47G10 Integral operators
47B38 Linear operators on function spaces (general)
Full Text: DOI
[1] S.V. ASTASHKINOn the geometric properties of Ces‘aro spaces. Russian, with Russian summary, Mat. Sb.2034 (2012), 61-80.
[2] S.V. ASTASHKIN ANDL. MALIGRANDA,Ces‘aro function spaces fail thefixed point property, Proc. Amer. Math. Soc.13612 (2008), 4289-4294. · Zbl 1168.46014
[3] S.V. ASTASHKIN ANDL. MALIGRANDA,Structure of Ces‘aro function spaces, Indag. Math. (N.S.). 203 (2009), 329-379. · Zbl 1200.46027
[4] S.V. ASTASHKIN ANDL. MALIGRANDA,Rademacher functions in Ces‘aro type spaces, Studia Math. 1983 (2010), 235-247.
[5] S.V. ASTASHKIN ANDL. MALIGRANDA,Geometry of Ces‘aro function spaces, Russian. Funktsional. Anal. i Prilozhen.451 (2011) 79-82, translation in Funct. Anal. Appl.451 (2011), 64-68. · Zbl 1271.46027
[6] S.V. ASTASHKIN ANDL. MALIGRANDA,Interpolation of Ces‘aro sequence and function spaces, Studia Math.2151 (2013), 39-69. · Zbl 1357.46023
[7] S.V. ASTASHKIN ANDL. MALIGRANDA,A short proof of some recent results related to Ces‘aro function spaces, Indag. Math. (N.S.)243 (2013), 589-592. · Zbl 1292.46008
[8] S.V. ASTASHKIN ANDL. MALIGRANDA,Interpolation of Ces‘aro and Copson spaces, Banach and function spaces IV (ISBFS 2012). Yokohama Publ., Yokohama. 123-133, 2014.
[9] S.V. ASTASHKIN ANDL. MALIGRANDA,Structure of Ces‘aro function spaces: a survey, Banach Center Publ.102(2014), 13-40. · Zbl 1327.46028
[10] S. BARZA, A.N. MARCOCI ANDL.G. MARCOCI,Factorizations of weighted Hardy inequalities, Bull. Braz. Math. Soc. (N.S.)494 (2018), 915-932. · Zbl 1404.26023
[11] G. BENNETT,Factorizing the classical inequalities, Mem. Amer. Math. Soc.120, 1996. · Zbl 0857.26009
[12] W.D. EVANS, A. GOGATISHVILI ANDB. OPIC,The reverse Hardy inequality with measures, Math. Inequal. Appl.111 (2008), 43-74. · Zbl 1136.26004
[13] A. GOGATISHVILI, R.CH. MUSTAFAYEV ANDL.-E. PERSSON,Some new iterated Hardy-type inequalities, J. Funct. Spaces Appl. (2012). · Zbl 1260.26023
[14] A. GOGATISHVILI ANDR.CH. MUSTAFAYEV,Weighted iterated Hardy-type inequalities, Math. Inequal. Appl.203 (2017), 683-728. · Zbl 1375.26032
[15] A. GOGATISHVILI ANDR.CH. MUSTAFAYEV,Iterated Hardy-type inequalities involving suprema, Math. Inequal. Appl.204 (2017), 901-927. · Zbl 1379.26018
[16] A. GOGATISHVILI, R.CH. MUSTAFAYEV ANDT. ¨UNVER,Embeddings between weighted Copson and Ces‘aro function spaces, Czechoslovak Math. J.67 (142)4 (2017), 1105-1132. · Zbl 06819576
[17] A. GOGATISHVILI, R.CH. MUSTAFAYEV ANDT. ¨UNVER,Pointwise Multipliers between weighted Copson and Ces‘aro function spaces, Math. Slovaca696 (2019), 1303-1328.
[18] A. GOGATISHVILI ANDL. PICK,Embeddings and duality theorems for weak classical Lorentz spaces, Canad. Math. Bull.491 (2006), 82-95. · Zbl 1106.26018
[19] A. GOGATISHVILI, B. OPIC ANDL. PICK,Weighted inequalities for Hardy-type operators involving suprema, Collect. Math.573 (2006), 227-255. · Zbl 1116.47041
[20] K.-G. GROSSE-ERDMANN,The blocking technique, weighted mean operators and Hardy’s inequality, Lecture Notes in Mathematics.1679x+114, Springer-Verlag, Berlin, 1998. · Zbl 0888.26014
[21] B.D. HASSARD ANDD.A. HUSSEIN,On Ces‘aro function spaces, Tamkang J. Math.4(1973), 19-25.
[22] A. KAMINSKA AND´D. KUBIAK,On the dual of Ces‘aro function space, Nonlinear Anal.755 (2012), 2760-2773. · Zbl 1245.46024
[23] M. KREPELAˇ,Integral conditions for Hardy-type operators involving suprema, Collect. Math.681 (2017), 21-50. · Zbl 1367.47012
[24] M. KREPELA ANDˇL. PICK,Weighted inequalities for iterated Copson integral operators, Studia Math.2531 (2020), 163-197. · Zbl 07220475
[25] K. LESNIK AND´L. MALIGRANDA,Symmetrization, factorization and arithmetic of quasi-Banach function spaces, J. Math. Anal. Appl.4702 (2019), 1136-1166. · Zbl 1403.46028
[26] R. MUSTAFAYEV,On weighted iterated Hardy-type inequalities, Positivity.221 (2018), 275-299. · Zbl 1387.26043
[27] B. OPIC ANDA. KUFNER,Hardy-type inequalities, Pitman Research Notes in Mathematics Series. 219xii+333, Longman Scientific & Technical, Harlow, 1990. · Zbl 0698.26007
[28] J.-S. SHIUE,A note on Ces‘aro function space, Tamkang J. Math.12 (1970), 91-95. · Zbl 0215.19601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.