×

Stimulated Raman adiabatic passage-like protocols for amplitude transfer generalize to many bipartite graphs. (English) Zbl 1454.81043

Summary: Adiabatic passage techniques, used to drive a system from one quantum state into another, find widespread applications in physics and chemistry. We focus on techniques to spatially transport a quantum amplitude over a strongly coupled system, such as STImulated Raman Adiabatic Passage (STIRAP) and Coherent Tunneling by Adiabatic Passage (CTAP). Previous results were shown to work on certain graphs, such as linear chains, square and triangular lattices, and branched chains. We prove that similar protocols work much more generally in a large class of (semi-)bipartite graphs. In particular, under random couplings, adiabatic transfer is possible on graphs that admit a perfect matching both when the sender is removed and when the receiver is removed. Many of the favorable stability properties of STIRAP/CTAP are inherited, and our results readily apply to transfer between multiple potential senders and receivers. We numerically test transfer between the leaves of a tree and find surprisingly accurate transfer, especially when straddling is used. Our results may find applications in short-distance communication between multiple quantum computers and open up a new question in graph theory about the spectral gap around the value 0.
©2020 American Institute of Physics

MSC:

81P47 Quantum channels, fidelity
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
05C82 Small world graphs, complex networks (graph-theoretic aspects)
05C05 Trees
81P68 Quantum computation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gaubatz, U.; Rudecki, P.; Schiemann, S.; Bergmann, K., Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results, J. Chem. Phys., 92, 5363-5376 (1990) · doi:10.1063/1.458514
[2] Vitanov, N. V.; Rangelov, A. A.; Shore, B. W.; Bergmann, K., Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys., 89, 015006 (2017) · doi:10.1103/revmodphys.89.015006
[3] Kasevich, M. A., Coherence with atoms, Science, 298, 1363-1368 (2002) · doi:10.1126/science.1079430
[4] Kotru, K.; Butts, D. L.; Kinast, J. M.; Stoner, R. E., Large-area atom interferometry with frequency-swept Raman adiabatic passage, Phys. Rev. Lett., 115, 103001 (2015) · doi:10.1103/physrevlett.115.103001
[5] Král, P.; Thanopulos, I.; Shapiro, M., Colloquium: Coherently controlled adiabatic passage, Rev. Mod. Phys., 79, 53-77 (2007) · doi:10.1103/revmodphys.79.53
[6] Stellmer, S.; Pasquiou, B.; Grimm, R.; Schreck, F., Creation of ultracold Sr_2 molecules in the electronic ground state, Phys. Rev. Lett., 109, 115302 (2012) · doi:10.1103/physrevlett.109.115302
[7] Petrosyan, D.; Rao, D. D. B.; Mølmer, K., Filtering single atoms from Rydberg-blockaded mesoscopic ensembles, Phys. Rev. A, 91, 043402 (2015) · doi:10.1103/physreva.91.043402
[8] Moses, S. A.; Covey, J. P.; Miecnikowski, M. T.; Jin, D. S.; Ye, J., New frontiers for quantum gases of polar molecules, Nat. Phys., 13, 13-20 (2017) · doi:10.1038/nphys3985
[9] Ciamei, A.; Bayerle, A.; Chen, C.-C.; Pasquiou, B.; Schreck, F., Efficient production of long-lived ultracold Sr_2 molecules, Phys. Rev. A, 96, 013406 (2017) · doi:10.1103/physreva.96.013406
[10] Pachos, J.; Walther, H., Quantum computation with trapped ions in an optical cavity, Phys. Rev. Lett., 89, 187903 (2002) · doi:10.1103/physrevlett.89.187903
[11] Troiani, F.; Hohenester, U.; Molinari, E., High-finesse optical quantum gates for electron spins in artificial molecules, Phys. Rev. Lett., 90, 206802 (2003) · doi:10.1103/physrevlett.90.206802
[12] Paspalakis, E.; Kylstra, N. J., Coherent manipulation of superconducting quantum interference devices with adiabatic passage, J. Mod. Opt., 51, 1679-1689 (2004) · Zbl 1058.81530 · doi:10.1080/09500340408232482
[13] Timoney, N.; Baumgart, I.; Johanning, M.; Varón, A. F.; Plenio, M. B.; Retzker, A.; Wunderlich, C., Quantum gates and memory using microwave-dressed states, Nature, 476, 185-188 (2011) · doi:10.1038/nature10319
[14] Koh, T. S.; Coppersmith, S. N.; Friesen, M., High-fidelity gates in quantum dot spin qubits, Proc. Natl. Acad. Sci. U. S. A., 110, 19695-19700 (2013) · doi:10.1073/pnas.1319875110
[15] Malinovsky, V. S.; Tannor, D. J., Simple and robust extension of the stimulated Raman adiabatic passage technique to N -level systems, Phys. Rev. A, 56, 4929-4937 (1997) · doi:10.1103/physreva.56.4929
[16] Eckert, K.; Lewenstein, M.; Corbalán, R.; Birkl, G.; Ertmer, W.; Mompart, J., Three-level atom optics via the tunneling interaction, Phys. Rev. A, 70, 023606 (2004) · doi:10.1103/physreva.70.023606
[17] Greentree, A. D.; Cole, J. H.; Hamilton, A. R.; Hollenberg, L. C. L., Coherent electronic transfer in quantum dot systems using adiabatic passage, Phys. Rev. B, 70, 235317 (2004) · doi:10.1103/physrevb.70.235317
[18] Ohshima, T.; Ekert, A.; Oi, D. K. L.; Kaslizowski, D.; Kwek, L. C., Robust state transfer and rotation through a spin chain via dark passage (2007)
[19] DiVincenzo, D. P.; , The physical implementation of quantum computation, Fortschr. Phys., 48, 771-783 (2000) · Zbl 1071.81510 · doi:10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
[20] Preskill, J., Quantum computing in the NISQ era and beyond, Quantum, 2, 79 (2018) · doi:10.22331/q-2018-08-06-79
[21] Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, T.; Mompart, J., Spatial adiabatic passage: A review of recent progress, Rep. Prog. Phys., 79, 074401 (2016) · doi:10.1088/0034-4885/79/7/074401
[22] Bradly, C. J.; Rab, M.; Greentree, A. D.; Martin, A. M., Coherent tunneling via adiabatic passage in a three-well Bose-Hubbard system, Phys. Rev. A, 85, 053609 (2012) · doi:10.1103/physreva.85.053609
[23] Longhi, S., Coherent transfer by adiabatic passage in two-dimensional lattices, Ann. Phys., 348, 161-175 (2014) · Zbl 1343.81126 · doi:10.1016/j.aop.2014.05.020
[24] Greentree, A. D.; Devitt, S. J.; Hollenberg, L. C. L., Quantum-information transport to multiple receivers, Phys. Rev. A, 73, 032319 (2006) · doi:10.1103/physreva.73.032319
[25] Chen, B.; Fan, W.; Xu, Y.; Peng, Y.-D.; Zhang, H.-Y., Multipath adiabatic quantum state transfer, Phys. Rev. A, 88, 022323 (2013) · doi:10.1103/physreva.88.022323
[26] Batey, C.; Jeske, J.; Greentree, A. D., Dark state adiabatic passage with branched networks and high-spin systems: Spin separation and entanglement, Front. ICT, 2, 19 (2015) · doi:10.3389/fict.2015.00019
[27] Morris, J. R.; Shore, B. W., Reduction of degenerate two-level excitation to independent two-state systems, Phys. Rev. A, 27, 906-912 (1983) · doi:10.1103/physreva.27.906
[28] Godsil, C., State transfer on graphs, Discrete Math., 312, 1, 129-147 (2012) · Zbl 1232.05123 · doi:10.1016/j.disc.2011.06.032
[29] Born, M.; Fock, V., Beweis des Adiabatensatzes, Z. Phys., 51, 165-180 (1928) · JFM 54.0994.03 · doi:10.1007/bf01343193
[30] Childs, A. M.; Farhi, E.; Preskill, J., Robustness of adiabatic quantum computation, Phys. Rev. A, 65, 012322 (2001) · doi:10.1103/physreva.65.012322
[31] Xu, K.; Williams, R.; Hong, S.-H.; Liu, Q.; Zhang, J.; Eppstein, D.; Gansner, E. R., Semi-bipartite graph visualization for gene ontology networks, Graph Drawing, 244-255 (2010), Springer Berlin Heidelberg · Zbl 1284.68479
[32] Al-Kofahi, O. M.; Kamal, A. E., Network coding-based protection of many-to-one wireless flows, IEEE J. Sel. Areas Commun., 27, 797-813 (2009) · doi:10.1109/jsac.2009.090619
[33] Brouwer, A. E.; Haemers, W. H., Spectra of Graphs (2012), Springer-Verlag: Springer-Verlag, New York · Zbl 1231.05001
[34] Hensgens, T.; Fujita, T.; Janssen, L.; Li, X.; Van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K., Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array, Nature, 548, 70-73 (2017) · doi:10.1038/nature23022
[35] Graefe, E. M.; Korsch, H. J.; Witthaut, D., Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage, Phys. Rev. A, 73, 013617 (2006) · doi:10.1103/physreva.73.013617
[36] Bloch, I.; Dalibard, J.; Nascimbène, S., Quantum simulations with ultracold quantum gases, Nat. Phys., 8, 267-276 (2012) · doi:10.1038/nphys2259
[37] Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M., Interfacing spin qubits in quantum dots and donors—Hot, dense, and coherent, npj Quantum Inf., 3, 34 (2017) · doi:10.1038/s41534-017-0038-y
[38] Groenland, K., Adiabatic state distribution using anti-ferromagnetic spin systems, SciPost Phys., 6, 011 (2019) · doi:10.21468/scipostphys.6.1.011
[39] Greentree, A. D.; Cole, J. H.; Hamilton, A. R.; Hollenberg, L. C. L., Scaling of coherent tunneling adiabatic passage in solid-state coherent quantum systems, Proc. SPIE, 5650, 72-80 (2005) · doi:10.1117/12.583193
[40] Lieb, E. H.; Robinson, D. W., The finite group velocity of quantum spin systems, Commun. Math. Phys., 28, 251-257 (1972) · doi:10.1007/bf01645779
[41] Mitzenmacher, M.; Upfal, E., Probability and Computing (2017), Cambridge University Press · Zbl 1368.60002
[42] Horn, C. R. J. R. A., Matrix Analysis (1985), Cambridge University Press · Zbl 0576.15001
[43] Groenland, K., Quantum protocols for few-qubit devices (2020), University of Amsterdam
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.