×

Class groups of abelian fields, and the main conjecture. (English) Zbl 0729.11053

The first part of this paper gives a proof of the main conjecture of Iwasawa theory for abelian base fields, including the case \(p=2\), by Kolyvagin’s method of Euler systems. On the way, one obtains a general result on local units modulo circular units. This is then used to deduce theorems on the order of \(\chi\)-parts of p-class groups of abelian number fields: first for relative class groups as has been done recently by Solomon for odd p, and second for class groups of real fields (again including the case \(p=2)\). As a consequence, a generalization of the Gras conjecture is stated and proved.

MSC:

11R23 Iwasawa theory
11R29 Class numbers, class groups, discriminants
11R42 Zeta functions and \(L\)-functions of number fields
11R20 Other abelian and metabelian extensions
11R18 Cyclotomic extensions
11R27 Units and factorization
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] J. COATES, p-adic L-functions and Iwasawa theory, Proc. Symp. Alg. Number theory, Durham (1975), 269-353. · Zbl 0393.12027
[2] R. COLEMAN, Division values in local fields, Invent. Math., 53 (1979), 91-116. · Zbl 0429.12010
[3] R. COLEMAN, Local units modulo circular units, Proc. Amer. Math. Soc., 89, 1 (1983), 1-7. · Zbl 0528.12005
[4] L.J. FEDERER, Regulators, Iwasawa modules, and the Main conjecture for p = 2, in : N. KOBLITZ (ed.) : Number theory related to Fermat’s Last Theorem, Birkhäuser Verlag (1982), 289-296. · Zbl 0504.12009
[5] R. GILLARD, Unités cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 49-79. · Zbl 0387.12002
[6] R. GOLD, J. KIM, Bases for cyclotomic units, Comp. Math., 71 (1989), 13-28. · Zbl 0687.12003
[7] G. GRAS, Sur l’annulation en 2 des classes relatives des corps abéliens, C.R. Math. Rep. Acad. Sci. Canada, 1 (1978), n°2, 107-110. · Zbl 0403.12005
[8] R. GREENBERG, On p-adic L-functions and cyclotomic fields I, Nagoya Math. J., 56 (1975), 61-77. · Zbl 0315.12008
[9] R. GREENBERG, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158. · Zbl 0373.12007
[10] B. GROSS, p-adic L-series at s = 0, J. Math. Soc. Japan, 28 (1981), 979-994. · Zbl 0507.12010
[11] K. IWASAWA, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82. · Zbl 0125.29207
[12] K. IWASAWA, Lectures on p-adic L-functions, Annals of Math. Studies n°74, Princeton University Press, Princeton 1972. · Zbl 0236.12001
[13] K. IWASAWA, On Zl-extensions of algebraic number fields, Ann. of Math., (2) (1979), 236-326. · Zbl 0285.12008
[14] M. KOLSTER, A relation between the 2-primary parts of the main conjecture and the Birch-Tate conjecture, Canad. Math. Bull., 32 (1989), 248-251. · Zbl 0675.12004
[15] V. A. KOLYVAGIN, Euler systems. In : The Grothendieck Festschrift, vol. 2, 435-483, Birkhäuser Verlag 1990. · Zbl 0742.14017
[16] S. LANG, Cyclotomic fields II, Graduate Texts in Mathematics, Springer Verlag, 1980. · Zbl 0435.12001
[17] B. MAZUR, A. WILES, Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. · Zbl 0545.12005
[18] K. RUBIN, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math., 93 (1988), 701-713. · Zbl 0673.12004
[19] K. RUBIN, The Main Conjecture, Appendix to the second edition of S. Lang : Cyclotomic fields, Springer Verlag, 1990.
[20] W. SINNOTT, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., 62 (1980), 181-234. · Zbl 0465.12001
[21] W. SINNOTT, Appendix to L. Federer, B. Gross : Regulators and Iwasawa modules, Invent. Math., 62 (1981), 443-457. · Zbl 0468.12005
[22] D. SOLOMON, On the class groups of imaginary abelian fields, Ann. Inst. Fourier, Grenoble, 40-3 (1990), 467-492. · Zbl 0694.12004
[23] L. WASHINGTON, Introduction to cyclotomic fields, Graduate Texts in Mathematics n°83, Springer Verlag, 1982. · Zbl 0484.12001
[24] A. WILES, The Iwasawa conjecture for totally real fields, Ann. Math., 131 (1990), 493-540. · Zbl 0719.11071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.