×

zbMATH — the first resource for mathematics

The moment mapping for unitary representations. (English) Zbl 0729.22016
Some general properties of the moment map of a unitary representation of a Lie group are derived in view of the Fröhlicher-Kriegl calculus which is explained in the first part of the paper.

MSC:
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
46E10 Topological linear spaces of continuous, differentiable or analytic functions
46A17 Bornologies and related structures; Mackey convergence, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auslander, L., Kostant, B.: Polarization and unitary representations of solvable Lie groups. Inventiones Math. 14 (1971), 255-354. · Zbl 0233.22005
[2] Boman, J.: Differentiability of a function and of its compositions with functions of one variable. Math. Scand. 20 (1967), 249-268. · Zbl 0182.38302
[3] Frölicher, A., Kriegl, A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, J. Wiley, Chichester 1988. · Zbl 0657.46034
[4] Libermann, P., Marle, C. M.: Symplectic geometry and analytical mechanics. Mathematics and its applications, D. Reidel, Dordrecht, 1987. · Zbl 0643.53002
[5] Keller, H. H.: Differential calculus in locally convex spaces. Springer Lecture Notes 417 (1974). · Zbl 0293.58001
[6] Kirillov, A. A.: Elements of the theory of representations. Springer-Verlag, Berlin 1976. · Zbl 0342.22001
[7] Kirillov, A. A.: Unitary representations of nilpotent Lie groups (Russian). Math. Surveys 17 (1962), 53-104. · Zbl 0106.25001
[8] Knapp, A. W.: Representation theory of semisimple Lie groups. Princeton University Press, Princeton, 1986. · Zbl 0604.22001
[9] Kostant, B.: Quantization and unitary representations. In: Lecture Notes in Mathematics, Vol. 170, Springer-Verlag, 1970, pp. 87-208. · Zbl 0223.53028
[10] Kriegl, A.: Die richtigen Räume für Analysis im Unendlich-Dimensionalen. Monatshefte Math. 94 (1982), 109-124. · Zbl 0489.46035
[11] Kriegl, A.: Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen. Monatshefte Math. 95 (1983), 287-309. · Zbl 0511.46043
[12] Kriegl, A., Michor, P. W.: The convenient setting for real analytic mappings. Acta Math. (to appear). · Zbl 0738.46024
[13] Kriegl, A., Nel, L. D.: A convenient setting for holomorphy. Cahiers Top. Géom. Diff. 26 (1985), 273-309. · Zbl 0581.46041
[14] Michor, P. W.: Manifolds of differentiable mappings. Shiva Mathematics Series 3, Orpington 1980. · Zbl 0433.58001
[15] Milnor, J.: Remarks on infinite dimensional Lie groups. In: Relativity, Groups, and Topology II, Les Houches 1983 (B. S. De Witt, R. Stora, Eds), Elsevier, Amsterdam 1984.
[16] Pressley, A., Segal, G.: Loop groups. Oxford Mathematical Monographs, Oxford University Press 1986. · Zbl 0618.22011
[17] Warner, G.: Harmonic analysis on semisimple Lie groups, Volume I. Springer-Verlag, New York 1972. · Zbl 0265.22020
[18] Weinstein, A.: Lectures on symplectic manifolds. Regional conference series in mathematics 29 (1977), Amer. Math. Soc. · Zbl 0406.53031
[19] Wiklicky, H.: Physical interpretations of the moment mapping for unitary representations. Diplomarbeit, Universität Wien, 1989.
[20] Wildberger, N. J.: Convexity and unitary representations of nilpotent Lie groups. Inventiones Math. 98 (1989), 281-292. · Zbl 0684.22005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.