p-adic path integrals. (English) Zbl 0729.58057

Summary: The definition of a path integral is proposed. The method suggested is analogous to Lagrange’s formulation of a path integral used in ordinary quantum mechanics. The notation of linear order on the set of p-adic number, p-adic segment, p-adic Lagrangian, integral of p-adic function of one variable and classical action are introduced. It is proven that if the action is stationary at some trajectory then the Euler-Lagrange equations are satisfied on this trajectory. A finite approximation of a path integral is constructed and the kernel of the operator of evolution is calculated for the case of p-adic harmonic oscillator.


58Z05 Applications of global analysis to the sciences
81S40 Path integrals in quantum mechanics
Full Text: DOI


[1] DOI: 10.1007/BF01218590 · Zbl 0688.22004
[2] DOI: 10.1007/BF01016111 · Zbl 0698.43006
[3] DOI: 10.1007/BF00397056 · Zbl 0702.35219
[4] DOI: 10.1016/0370-2693(89)90070-1
[5] DOI: 10.1016/0370-2693(88)90807-6
[6] DOI: 10.1142/S0217732388000763
[7] DOI: 10.1007/BF01017088 · Zbl 0636.12015
[8] DOI: 10.1088/0264-9381/4/4/003
[9] DOI: 10.1016/0370-2693(87)90349-2 · Zbl 0694.22006
[10] DOI: 10.1016/0370-2693(87)91356-6
[11] DOI: 10.1103/PhysRevLett.60.484
[12] DOI: 10.1103/PhysRevD.37.3077
[13] DOI: 10.1016/0370-2693(88)91145-8
[14] DOI: 10.1016/0370-2693(88)91318-4
[15] DOI: 10.1016/0370-2693(88)91318-4
[16] DOI: 10.1016/0370-2693(88)91318-4
[17] DOI: 10.1007/BF01947071 · Zbl 0493.35039
[18] Chrennikhov A. Ya., Usp. Math. Nauk 43 pp 88– (1988)
[19] Vladimirov V. S., Usp. Math. Nauk 43 pp 17– (1988)
[20] Clark D. N., Proc. Am. Math. Soc. 17 pp 262– (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.