×

zbMATH — the first resource for mathematics

On the susceptibility of local elastic buckling to chaos. (English) Zbl 0729.73919

MSC:
74G60 Bifurcation and buckling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] : A treatise on the mathematical theory of elasticity. Dover Edition, Cambridge University Press 1944.
[2] Stabilität der elastischen Linie in der Ebene und im Raum. Dissertation, Göttingen 1906.
[3] ; : Subharmonic and homoclinic bifurcation in a parametrically forced pendulum. Physica D (1985), 1–13. · Zbl 0585.70022
[4] Holmes, Indiana Univ. Math. J. 32 pp 2– (1983)
[5] El Naschie, Z. für Naturforschung 44a pp 645– (1989)
[6] : Soliton. Cambridge University Press, London 1986. · Zbl 0631.35001
[7] : Chaos and generalized bifurcation in science and engineering. In ; (eds.): Current advances in mechanical design and production. Pergamon Press 1988, pp. 389–399.
[8] Kahlert, Z. für Naturforschung 39a pp 1200– (1984)
[9] El Naschie, Internat. J. Mech. Sci. 6 pp 689– (1974)
[10] : High speed deformation of shells. In (ed.): IUTAM Symposium on high velocity deformation of solids. Springer Verlag, New York 1977, pp. 363–376.
[11] El Naschie, ZAMM 69 pp t367– (1989)
[12] Demechin, Izvestia Acad. Sc. USSR, MGH 5 pp 36– (1983)
[13] : Introduction to perturbation techniques. Wiley, New York 1981. · Zbl 0449.34001
[14] ; : Elements of structural stability. MacMillan, London 1972.
[15] Newell, J. Fluid Mechanics 38 pp 279– (1969)
[16] Schmidt, ZAMM 67 pp 17– (1987)
[17] : Stress, stability and chaos in structural engineering. McGraw Hill, London 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.