×

Making Sullivan algebras minimal through chain contractions. (English) Zbl 1475.55014

Sullivan algebras play important roles in rational homotopy theory. In the paper under review, the authors give an effective algorithm that with a non-minimal Sullivan algebra ends with its minimal model. This algorithm is a kind of modified AT-model algorithm used to compute a chain contraction providing other kinds of topological information such as (co)homology, cup products on cohomology and persistent homology.

MSC:

55P62 Rational homotopy theory
16E45 Differential graded algebras and applications (associative algebraic aspects)
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Cirici, J., Roig, A.: Sullivan minimal models of operad algebras. Eprint arXiv:1612.03862. Publicacions Matemàtiques, 63 (1) (2019) · Zbl 1408.18015
[2] Felix, Y., Halperin, S., Thomas, J.C.: Rational Homotopy Theory. Graduate Texts in Mathematics, vol. 205. Springer (2000)
[3] Felix, Y.; Halperin, S., Rational homotopy theory via Sullivan models: a survey, Not. Int. Congr. Chin. Math., 5, 2, 14-36 (2017) · Zbl 1383.55009
[4] Gatsinzi, JB, Hochschild cohomology of a Sullivan algebra, Mediterr. J. Math., 13, 3765-3776 (2016) · Zbl 1360.55011
[5] Gonzalez-Diaz, R.; Real, P., On the cohomology of 3D digital images, Discrete Appl. Math., 147, 245-263 (2005) · Zbl 1099.68120
[6] Gonzalez-Diaz, R.; Jimenez, MJ; Medrano, B.; Real, P., Chain homotopies for object topological representations, Discrete Appl. Math., 157, 3, 490-499 (2009) · Zbl 1168.68045
[7] Gonzalez-Diaz, R.; Jimenez, MJ; Medrano, B.; Real, P., A tool for integer homology computation: \( \lambda \)-AT-model, Image Vis. Comput., 27, 7, 837-845 (2009)
[8] Gonzalez-Diaz, R., Ion, A.N., Jimenez, M.J., Poyatos, R.: Incremental-Decremental Algorithm for Computing AT-Models and Persistent Homology. Proc. of Computer Analysis of Images and Patterns. CAIP 2011. LNCS, vol. 6854. Springer, Berlin (2011)
[9] Gonzalez-Diaz, R.; Lamar, J.; Umble, R., Computing cup products in \(\mathbb{Z}_2\)-cohomology of 3D polyhedral complexes, Found. Comput. Math., 14, 4, 721-744 (2014) · Zbl 1307.55001
[10] Gugenheim, VKAM; Lambe, L.; Stahsheff, JD, Perturbation theory in differential homological algebra I, Ill. J. Math., 33, 556-582 (1989) · Zbl 0661.55018
[11] Gugenheim, VKAM; Lambe, L.; Stahsheff, JD, Perturbation theory in differential homological algebra II, Ill. J. Math., 35, 3, 357-373 (1991) · Zbl 0727.55012
[12] Manero, V., Marco Buzunáriz, M.Á.: Effective computation of degree bounded minimal models for GCDA’s. J. Softw. Algebra Geom. 10, 25-39 (2020) · Zbl 1471.13054
[13] Quillen, D., Rational homotopy theory, Ann. Math., 90, 205-295 (1969) · Zbl 0191.53702
[14] Real, P., Homological perturbation theory and associativity, Homol. Homotopy Appl., 2, 5, 51-88 (2000) · Zbl 0949.18005
[15] Sullivan, D.: Geometric Topology: Localization, Periodicty, and Galois Symmetry. MIT Notes (1970)
[16] Sullivan, D., Rational Homotopy Theory (2001), Dordrecht: Kluwer Academic Publishers, Dordrecht
[17] Sullivan, D., Infinitesimal computations in topology, Publ. Math. de l’IHÉS, 47, 269-331 (1977) · Zbl 0374.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.