×

Sharp weighted Trudinger-Moser inequalities with the \(L^n\) norm in the entire space \(\mathbb{R}^n\) and existence of their extremal functions. (English) Zbl 1459.35139

Summary: In this paper, we mainly concern with the sharp weighted Trudinger-Moser inequalities with the \(L^n\) norm on the whole space (See Theorem 1.1 and 1.3). Most proofs in the literature of existence of extremals for the Trudinger-Moser inequalities on the whole space rely on finding a radially maximizing sequence through the symmetry and rearrangement technique. Obviously, this method is not efficient to deal with the existence of maximizers for the double weighted Trudinger-Moser inequality Eq. 1.4 because of the presence of the weight \(t\) and \(\beta\). In order to overcome this difficulty, we first apply the method of change of variables developed by M. Dong and G. Lu [Calc. Var. Partial Differ. Equ. 55, No. 4, Paper No. 88, 26 p. (2016; Zbl 1364.46026)] to eliminate the weight \(\beta\). Then we can employ the method combining the rearrangement and blow-up analysis to obtain the existence of the extremals to the double weighted Trudinger-Moser inequality Eq. 1.4. By constructing a proper test function sequence, we also derive the sharpness of the exponent \(a\) of the Trudinger-Moser inequalities Eqs. 1.3 and 1.4 (see Theorem 1.2 and 1.4). This complements earlier results in [V. H. Nguyen, J. Funct. Anal. 280, No. 3, Article ID 108833, 36 p. (2021; Zbl 1467.46038); X. Li and Y. Yang J. Differ. Equations 264, No. 8, 4901–4943 (2018; Zbl 1392.46036); G. Lu; and M. Zhu, J. Differ. Equations 267, No. 5, 3046–3082 (2019; Zbl 1432.35081)].

MSC:

35J50 Variational methods for elliptic systems
35J20 Variational methods for second-order elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adachi, S.; Tanaka, K., Trudinger type inequalities in \(\mathbb{R}^N\) RN and their best exponents, Proc. Amer. Math. Soc., 128, 2051-2057 (2000) · Zbl 0980.46020 · doi:10.1090/S0002-9939-99-05180-1
[2] Adimurthi; Druet, O., Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Part. Diff. Eq., 29, 295-322 (2004) · Zbl 1076.46022 · doi:10.1081/PDE-120028854
[3] Carleson, L.; Chang, A., On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110, 113-127 (1986) · Zbl 0619.58013
[4] Cerný, R.; Cianchi, A.; Hencl, S., Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs, Annali di Matematica, 192, 2, 225-243 (2013) · Zbl 1272.46023 · doi:10.1007/s10231-011-0220-3
[5] Cohn, WS; Lu, G., Best constants for Moser-Trudinger inequalities on the Heisenberg group, Indiana Univ. Math. J., 50, 1567-1591 (2001) · Zbl 1019.43009 · doi:10.1512/iumj.2001.50.2138
[6] Cohn, W.; Lu, G., Sharp constants for Moser-Trudinger inequalities on spheres in complex space \(\mathbb{C}^n Cn\), Comm. Pure Appl. Math., 57, 11, 1458-1493 (2004) · Zbl 1063.35060 · doi:10.1002/cpa.20043
[7] Dong, M.; Lu, G., Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Part. Diff. Eq., 55, 26-88 (2016) · Zbl 1342.35090 · doi:10.1007/s00526-016-0965-z
[8] Dong, M.; Lam, N.; Lu, G., Sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities and their extremal functions, Nonlinear Anal., 173, 75-98 (2018) · Zbl 1397.46027 · doi:10.1016/j.na.2018.03.006
[9] do Ó, JM; de Souza, M., A sharp inequality of Trudinger-Moser type and extremal functions in \(H^{1,n}(\mathbb{R}^n\) H1,n(Rn), J. Differential Equations, 258, 4062-4101 (2015) · Zbl 1327.35459 · doi:10.1016/j.jde.2015.01.026
[10] do Ó, JM; de Souza, M.; de Medeiros, E., An improvement for the Trudinger-Moser inequality and applications, J. Diff. Eq., 256, 1317-1349 (2014) · Zbl 1283.49002 · doi:10.1016/j.jde.2013.10.016
[11] Flucher, M., Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment Math. Helv., 67, 471-497 (1992) · Zbl 0763.58008 · doi:10.1007/BF02566514
[12] Lam, N.; Lu, G., Sharp constants and optimizers for a class of the Caffarelli-Kohn-Nirenberg inequalities, Adv. Nonlinear Stud., 17, 457-480 (2017) · Zbl 1367.26035 · doi:10.1515/ans-2017-0012
[13] Lam, N.; Lu, G., A new approach to sharp Moser-Trudinger and Adams type inequalities: A rearrangement-free argument, J. Diff. Eq., 255, 298-325 (2013) · Zbl 1294.46034 · doi:10.1016/j.jde.2013.04.005
[14] Lam, N.; Lu, G., Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math., 231, 3259-3287 (2012) · Zbl 1278.42033 · doi:10.1016/j.aim.2012.09.004
[15] Lam, N.; Lu, G.; Tang, H., Sharp subcritical Moser-Trudinger inequalities on Heisenberg groups and subelliptic PDEs, Nonlinear Anal., 95, 77-92 (2014) · Zbl 1282.35393 · doi:10.1016/j.na.2013.08.031
[16] Lam, N.; Lu, G.; Zhang, L., Equivalence of critical and subcritical sharp Moser-Trudinger-Adams inequalities, Rev. Mat. Iberoam., 33, 1219-1246 (2017) · Zbl 1387.46034 · doi:10.4171/RMI/969
[17] Lam, N.; Lu, G.; Zhang, L., Existence and nonexistence of extremal functions for sharp Trudinger-Moser inequalities, Adv. Math., 352, 1253-1298 (2019) · Zbl 1421.35008 · doi:10.1016/j.aim.2019.06.020
[18] Nguyen, V.: Extremal functions for the sharp Moser-Trudinger type inequalities in whole space \(\mathbb{R}^n \). arXiv:1705.05864v1 (2017)
[19] Li, J.; Lu, G.; Zhu, M., Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. Part. Diff. Eq., 57, 3, 26 (2018) · Zbl 1402.46026
[20] Li, X.; Yang, Y., Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space, J. Diff. Eq., 264, 4901-4943 (2018) · Zbl 1392.46036 · doi:10.1016/j.jde.2017.12.028
[21] Li, Y., Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Diff. Eq., 14, 163-192 (2001) · Zbl 0995.58021
[22] Li, Y., Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A., 48, 618-648 (2005) · Zbl 1100.53036 · doi:10.1360/04ys0050
[23] Li, Y.; Ruf, B., A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb{R}^n Rn\), Indiana Univ. Math. J., 57, 451-480 (2008) · Zbl 1157.35032 · doi:10.1512/iumj.2008.57.3137
[24] Lin, KC, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc., 348, 2663-2671 (1996) · Zbl 0861.49001 · doi:10.1090/S0002-9947-96-01541-3
[25] Lions, PL, The concentration-compactness principle in the calculus of variations, Part 1, Rev. Mat. Iberoamericana, 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[26] Lu, G.; Tang, H., Sharp Moser-Trudinger inequalities on hyperbolic spaces with exact growth condition, J. Geom. Anal., 26, 837-857 (2016) · Zbl 1356.46031 · doi:10.1007/s12220-015-9573-y
[27] Lu, G.; Yang, Y., Sharp constant and extremal function for the improved Moser-Trudinger inequality involving Lp norm in two dimension, Discrete Contin. Dyn. Syst., 25, 963-979 (2009) · Zbl 1182.35093 · doi:10.3934/dcds.2009.25.963
[28] Lu, G.; Zhu, M., A sharp Trudinger-Moser type inequality involving Ln norm in the entire space \(\mathbb{R}^n Rn\), J. Diff. Eq., 267, 3046-3082 (2019) · Zbl 1432.35081 · doi:10.1016/j.jde.2019.03.037
[29] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 1077-1092 (1971) · Zbl 0203.43701 · doi:10.1512/iumj.1971.20.20101
[30] Pohozaev, S. I.: The Sobolev embedding in the case pl = n, Proceeding of the Technical Scientific Conference on Advances of Scientific Research, 1964-1965. Mathematics Section, Moskov. Energet. Inst., pp. 158-170 (1965)
[31] Ruf, B., A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb{R}^2\) R2, J. Funct. Analysis, 219, 340-367 (2004) · Zbl 1119.46033 · doi:10.1016/j.jfa.2004.06.013
[32] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta. Math., 111, 248-302 (1964) · Zbl 0128.09101 · doi:10.1007/BF02391014
[33] Struwe, M., Positive solutions of critical semilinear elliptic equations on non-contractible planar domains, J. Eur. Math. Soc., 2, 329-388 (2000) · Zbl 0982.35041 · doi:10.1007/s100970000023
[34] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Diff. Eq., 51, 126-150 (1984) · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[35] Trudinger, NS, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-484 (1967) · Zbl 0163.36402
[36] Yang, Y., A sharp form of Moser-Trudinger inequality in high dimension, J. Funct. Anal., 239, 100-126 (2006) · Zbl 1141.46015 · doi:10.1016/j.jfa.2006.06.002
[37] Yudovich, VI, Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math Docl., 2, 746-749 (1961) · Zbl 0144.14501
[38] Zhang, C.; Chen, L., Concentration-compactness principle of singular Trudinger-Moser inequalities in \(\mathbb{R}^n Rn\) and n-Laplace equations, Adv. Nonlinear Stud., 18, 567-585 (2018) · Zbl 1397.35117 · doi:10.1515/ans-2017-6041
[39] Zhu, J., Improved Moser-Trudinger inequality involving Lp norm in n dimensions, Adv. Nonlinear Stud., 14, 273-293 (2014) · Zbl 1315.35012 · doi:10.1515/ans-2014-0202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.