×

Isogeometric dual reciprocity boundary element method for solving transient heat conduction problems with heat sources. (English) Zbl 1466.65110

Summary: Up to now, the isogeometric boundary element method (IGBEM) has been widely applied in different fields, and the solved problems are basically independent of time. But an excellent numerical method is more than that, so it is necessary to explore a new IGBEM which can solve time-domain problems. Based on this, the isogeometric dual reciprocity boundary element method (IG-DRBEM) is proposed to solve transient heat transfer problems with heat sources. The introduction of the dual reciprocal method enables the IGBEM to solve the transient heat transfer problem conveniently. At the same time, it does not need to divide elements within the domain, which maintains the advantage of the IGBEM. First, the boundary domain integral equation is established by the weighted residual method and the field variables are discretized by NURBS basis functions. Then, the domain integral in the integral equation is transformed into the boundary by the classical dual reciprocity method. Finally, the standard first-order ordinary differential equations are formed. In order to examine the accuracy of the proposed method, several typical numerical examples are discussed carefully. The presented method can provide a new idea for solving time-dependent problems by IGBEM.

MSC:

65M38 Boundary element methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65D07 Numerical computation using splines
65R20 Numerical methods for integral equations
80A19 Diffusive and convective heat and mass transfer, heat flow
35K05 Heat equation
35Q79 PDEs in connection with classical thermodynamics and heat transfer

Software:

ISOGAT; GeoPDEs; G+Smo; Bembel
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blandford, G. E.; Ingraffea, A. R.; Liggett, J. A., Two-dimensional stress intensity factor computations using the boundary element method, Int. J. Numer. Methods Engrg., 17, 3, 387-404 (1981) · Zbl 0463.73082
[2] Grilli, S. T.; Skourup, J.; Svendsen, I. A., An efficient boundary element method for nonlinear water waves, Eng. Anal. Bound. Elem., 6, 2, 97-107 (1989)
[3] Kagami, S.; Fukai, I., Application of boundary-element method to electromagnetic field problems (short papers), IEEE Trans. Microw. Theory Techn., 32, 4, 455-461 (1984)
[4] Karabalis, D. L.; Beskos, D. E., Dynamic response of 3-D rigid surface foundations by time domain boundary element method, Earthquake Eng. Struct. Dyn., 12, 1, 73-93 (1984)
[5] Wrobel, L. C., The Boundary Element Method, Applications in Thermo-Fluids and Acoustics (2002), John Wiley & Sons · Zbl 0994.74002
[6] Bharadwaj, R.; Windemuth, A.; Sridharan, S.; Honig, B.; Nicholls, A., The fast multipole boundary element method for molecular electrostatics: An optimal approach for large systems, J. Comput. Chem., 16, 7, 898-913 (1995)
[7] Liu, Y., Fast Multipole Boundary Element Method: Theory and Applications in Engineering (2009), Cambridge university press
[8] Nishimura, N.; Yoshida, K. I.; Kobayashi, S., A fast multipole boundary integral equation method for crack problems in 3D, Eng. Anal. Bound. Elem., 23, 1, 97-105 (1999) · Zbl 0953.74074
[9] Liu, Y. J.; Nishimura, N., The fast multipole boundary element method for potential problems: a tutorial, Eng. Anal. Bound. Elem., 30, 5, 371-381 (2006) · Zbl 1187.65134
[10] Shen, L.; Liu, Y. J., An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation, Comput. Mech., 40, 3, 461-472 (2007) · Zbl 1176.76083
[11] Liu, Y. J.; Nishimura, N.; Otani, Y., Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method, Comput. Mater. Sci., 34, 2, 173-187 (2005)
[12] Kurz, S.; Rain, O.; Rjasanow, S., The adaptive cross-approximation technique for the 3D boundary-element method, IEEE Trans. Magn., 38, 2, 421-424 (2002)
[13] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[14] Auricchio, F.; Da Veiga, L. B.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[15] Moosavi, M. R.; Khelil, A., Isogeometric meshless finite volume method in nonlinear elasticity, Acta Mech., 226, 1, 123-135 (2015) · Zbl 1326.74126
[16] Natarajan, S.; Wang, J.; Song, C.; Birk, C., Isogeometric analysis enhanced by the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 283, 733-762 (2015) · Zbl 1425.65174
[17] Li, P.; Liu, J.; Lin, G.; Zhang, P. C.; Yang, G. T., A NURBS-based scaled boundary finite element method for the analysis of heat conduction problems with heat fluxes and temperatures on side-faces, Int. J. Heat Mass Transfer, 133, 764-779 (2017)
[18] lin, G.; Li, P.; Liu, J.; Zhang, P. C., Transient heat conduction analysis using the NURBS-enhanced scaled boundary finite element method and modified precise integration method, Acta Mech. Solida Sin., 30, 5, 445-464 (2017)
[19] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209, 87-100 (2012) · Zbl 1243.74193
[20] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured t-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
[21] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Engrg., 259, 93-102 (2013) · Zbl 1286.65176
[22] Takahashi, T.; Matsumoto, T., An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions, Eng. Anal. Bound. Elem., 36, 12, 1766-1775 (2012) · Zbl 1351.74138
[23] Chen, L.; Marburg, S.; Zhao, W.; Liu, C.; Chen, H., Implementation of isogeometric fast multipole boundary element methods for 2D half-space acoustic scattering problems with absorbing boundary condition, J. Comput. Acoust., 27, 02, Article 1850024 pp. (2019)
[24] Dolz, J.; Kurz, S.; Schops, S.; Wolf, F., Isogeometric boundary elements in electromagnetism: Rigorous analysis, fast methods, and examples, SIAM J. Sci. Comput., 41, 5, 983-1010 (2019)
[25] Bonnet, M.; Maier, G.; Polizzotto, C., On symmetric Galerkin boundary element method, Appl. Mech. Rev., 51, 669-704 (1998)
[26] Aimi, A.; Diligenti, M.; Sampoli, M. L.; Sestini, A., Isogeometric analysis and symmetric Galerkin BEM: a 2d numerical study, Appl. Math. Comput., 272, 173-186 (2016) · Zbl 1410.65468
[27] Nguyen, B. H.; Tran, H. D.; Anitescu, C.; Zhuang, X.; Rabczuk, T., An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems, Comput. Methods Appl. Mech. Engrg., 306, 252-275 (2016) · Zbl 1436.74083
[28] Aimi, A.; Calabrò, F.; Diligenti, M.; Sampoli, M. L.; Sangalli, G.; Sestini, A., Efficient assembly based on b-spline tailored quadrature rules for the IgA-SGBEM, Comput. Methods Appl. Mech. Engrg., 331, 327-342 (2018) · Zbl 1439.65207
[29] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg., 316, 151-185 (2017) · Zbl 1439.74370
[30] Gong, Y. P.; Dong, C. Y.; Qin, X. C., An isogeometric boundary element method for three dimensional potential problems, J. Comput. Appl. Math., 313, 454-468 (2017) · Zbl 1353.65129
[31] An, Z.; Yu, T.; Bui, T. Q.; Wang, C.; Trinh, N. A., Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis, Adv. Eng. Softw., 116, 36-49 (2018)
[32] Lian, H.; Kerfriden, P.; Bordas, S. P.A., Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Int. J. Numer. Methods Engrg., 106, 12, 972-1017 (2016) · Zbl 1352.74467
[33] Chen, L. L.; Lian, H.; Liu, Z.; Chen, H. B.; Atroshchenko, E.; Bordas, S. P.A., Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods, Comput. Methods Appl. Mech. Engrg., 355, 926-951 (2019) · Zbl 1441.74290
[34] Sun, F. L.; Gong, Y. P.; Dong, C. Y., A novel fast direct solver for 3D elastic inclusion problems with the isogeometric boundary element method, J. Comput. Appl. Math., 377, Article 112904 pp. (2020) · Zbl 1437.65218
[35] Wu, Y. H.; Dong, C. Y.; Yang, H. S., Isogeometric indirect boundary element method for solving the 3D acoustic problems, J. Comput. Appl. Math., 363, 273-299 (2020) · Zbl 1416.76169
[36] Fang, W.; An, Z. L.; Yu, T. T.; Bui, T. Q., Analysis of unsteady heat transfer problems with complex geometries using isogeometric boundary element method, CMC-Comput. Mat. Contin., 62, 2, 929-962 (2020)
[37] Beer, G.; Marussig, B.; Duenser, C., The Isogeometric Boundary Element Method (2020), Springer · Zbl 1422.65001
[38] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015)
[39] Jüttler, B.; Langer, U.; Mantzaflaris, A.; Moore, S. E.; Zulehner, W., Geometry + simulation modules: Implementing isogeometric analysis, Proc. Appl. Math. Mech., 14, 1, 961-962 (2014)
[40] Vuong, A.-V.; Heinrich, Ch.; Simeon, B., ISOGAT: a 2D tutorial MATLAB code for isogeometric analysis, Comput. Aided Geom. Design., 27, 8, 644-655 (2010) · Zbl 1205.65319
[41] de Falco, C.; Reali, A.; Vazquez, R., GeoPDEs: a research tool for isogeometric analysis of PDEs, Adv. Eng. Softw., 42, 12, 1020-1034 (2011) · Zbl 1246.35010
[42] Rypl, D.; Patzak, B., From the finite element analysis to the isogeometric analysis in an object oriented computing environment, Adv. Eng. Softw., 44, 1, 116-125 (2012)
[43] Simpson, R. N.; Bordas, S. P.A.; Lian, H.; Trevelyan, J., An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct., 118, 2-12 (2013)
[44] Dölz, J.; Harbrecht, H.; Kurz, S.; Multerer, M.; Schöps, S.; Wolf, F., Bembel: The fast isogeometric boundary element c++ library for Laplace, Helmholtz, and electric wave equation, SoftwareX, 11, 1-7 (2020)
[45] Nardini, D.; Brebbia, C. A., A new approach to free vibration using boundary elements, Bound. Elem. Methods Engrg. (1982) · Zbl 0541.73104
[46] Nardini, D.; Brebbia, C. A., A new approach to free vibration analysis using boundary elements, Appl. Math. Model., 7, 3, 157-162 (1983) · Zbl 0545.73078
[47] Partridge, P. W.; Brebbia, C. A.; Wrobel, L. C., The Dual Reciprocity Boundary Element Method (1992), Computational Mechanics Publications, Southampton Boston · Zbl 0758.65071
[48] Wrobel, L. C.; Brebbia, C. A., The dual reciprocity boundary element formulation for nonlinear diffusion problems, Comput. Methods Appl. Mech. Engrg., 65, 2, 147-164 (1987) · Zbl 0612.76094
[49] Beskos, D. E., Boundary element methods in dynamic analysis: Part II (1986-1996), Appl. Mech. Rev., 50, 3, 149-197 (1997)
[50] Lu, W. Q.; Liu, J.; Zeng, Y., Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method, Eng. Anal. Bound. Elem., 22, 3, 167-174 (1998) · Zbl 0932.92010
[51] Albuquerque, E. L.; Sollero, P.; Fedelinski, P., Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems, Comput. Struct., 81, 17, 1703-1713 (2003)
[52] Fahmy, M. A., Generalized magneto-thermo-viscoelastic problems of rotating functionally graded anisotropic plates by the dual reciprocity boundary element method, J. Therm. Stresses., 36, 3, 284-303 (2013)
[53] Yun, B. I.; Ang, W. T., A dual-reciprocity boundary element method for axisymmetric thermoelastostatic analysis of nonhomogeneous materials, Eng. Anal. Bound. Elem., 36, 12, 1776-1786 (2012) · Zbl 1351.74149
[54] Zhou, J. H.; Zhang, Y. W.; Chen, J. K., A dual reciprocity boundary element method for photothermal interactions in laser-induced thermotherapy, Int. J. Heat Mass Transfer, 51, 15-16, 3869-3881 (2008) · Zbl 1148.80362
[55] Wen, J.; Khonsari, M. M., Transient heat conduction in rolling/sliding components by a dual reciprocity boundary element method, Int. J. Heat Mass Transfer, 52, 5-6, 1600-1607 (2009) · Zbl 1157.80376
[56] Yu, B.; Zhou, H. L.; Chen, H. L.; Tong, Y., Precise time-domain expanding dual reciprocity boundary element method for solving transient heat conduction problems, Int. J. Heat Mass Transfer., 91, 110-118 (2015)
[57] Guo, S. P.; Li, X. J.; Zhang, J. M.; Bin, G. F.; Huang, W., A triple reciprocity method in Laplace transform boundary element method for three-dimensional transient heat conduction problems, Int. J. Heat Mass Transfer, 114, 258-267 (2017)
[58] Chanthawara, K.; Kaennakham, S.; Toutip, W., The dual reciprocity boundary element method (DRBEM) with multiquadric radial basis function for coupled burgers’ equations, Int. J. Multiphys., 8, 2 (2016)
[59] Gomes, G.; Neto, A. M.D.; Bezerra, L. M.; Silva, R., An object-oriented approach to dual reciprocity boundary element method applied to 2D elastoplastic problems, Multi. Model. Mat. Str., 15, 5, 958-974 (2019)
[60] Gao, X. W., The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Bound. Elem., 26, 10, 905-916 (2002) · Zbl 1130.74461
[61] Albuquerque, E. L.; Sollero, P.; Portilho de Paiva, W., The radial integration method applied to dynamic problems of anisotropic plates, Commun. Numer. Meth. Eng., 23, 9, 805-818 (2007) · Zbl 1130.74050
[62] Yang, K.; Gao, X. W., Radial integration BEM for transient heat conduction problems, Eng. Anal. Bound. Elem., 34, 6, 557-563 (2010) · Zbl 1267.80017
[63] Al-Jawary, M. A.; Wrobel, L. C., Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients, Eng. Anal. Bound. Elem., 36, 5, 685-695 (2012) · Zbl 1351.80015
[64] Cui, M.; Peng, H. F.; Xu, B. B.; Gao, X. W.; Zhang, Y. W., A new radial integration polygonal boundary element method for solving heat conduction problems, Int. J. Heat Mass Transfer, 123, 251-260 (2018)
[65] Gao, X. W.; Zhang, C.; Sladek, J.; Sladek, V., Fracture analysis of functionally graded materials by a BEM, Compos. Sci. Technol., 68, 5, 1209-1215 (2008)
[66] Gao, X. W.; Zheng, B. J.; Yang, K.; Zhang, C., Radial integration BEM for dynamic coupled thermoelastic analysis under thermal shock loading, Comput. Struct., 158, 140-147 (2015)
[67] Yu, B.; Yao, W. A.; Gao, X. W.; Zhang, S., Radial integration BEM for one-phase solidification problems, Eng. Anal. Bound. Elem., 39, 36-43 (2014) · Zbl 1297.80014
[68] Carslaw, H. S.; Jaeger, J. C., Conduction of Heat in Solids (1959), Clarendon Press: Clarendon Press Oxford · Zbl 0972.80500
[69] Chasapi, M.; Klinkel, S., A scaled boundary isogeometric formulation for the elasto-plastic analysis of solids in boundary representation, Comput. Methods Appl. Mech. Engrg., 333, 475-496 (2018) · Zbl 1440.74078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.