×

Integer-fractional decomposition and stability analysis of fractional-order nonlinear dynamic systems using homotopy singular perturbation method. (English) Zbl 1458.93189

Summary: Achieving a simplified model is a major issue in the field of fractional-order nonlinear systems, especially large-scale systems. So that in addition to simplifying the model, the outstanding features of the fractional-order modeling, such as memory feature, are preserved. This paper presented the homotopy singular perturbation method (HSPM) to reduce the complexity of the model and use the advantages of both models of the fractional order and the integer order. This method is a combination of the fractional-order singular perturbation method (FOSPM) and the homotopy perturbation method (HPM). Firstly, the FOSPM is developed for fractional-order nonlinear systems; then, a modification of the HPM is proposed. Finally, the HSPM is presented using a combination of these two methods. fractional-order nonlinear systems can be divided into two lower-order subsystems such as nonlinear or linear integer-order subsystem and linear fractional-order subsystem using this hybrid method. Convergence analysis of tracking error to zero is theoretically presented, and the effectiveness of the proposed method is also evaluated with two examples. Next, the number and location of equilibrium points are compared between the original system and the subsystems obtained from the proposed method. In the end, we show that the stability of fractional-order nonlinear system can be determined by investigating the stability of the subsystems using Theorem 3 and Lemma 2.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
26A33 Fractional derivatives and integrals
93C70 Time-scale analysis and singular perturbations in control/observation systems
93C10 Nonlinear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ortigueira, MD, Fractional calculus for scientists and engineers (2011), Berlin: Springer, Berlin · Zbl 1251.26005
[2] Saxena, S., Load frequency control strategy via fractional-order controller and reduced-order modeling, Int J Electr Power Energy Syst, 104, 603-614 (2019)
[3] Ortigueira, MD; Valério, D.; Machado, JT, Variable Order Fractional Systems, Commun Nonlinear Sci Numer Simul, 71, 231-243 (2019) · Zbl 1464.26007
[4] Mirzajani, S.; Aghababa, MP; Heydari, A., Adaptive T-S fuzzy control design for fractional-order systems with parametric uncertainty and input constraint, Fuzzy Sets Syst, 1, 1-18 (2018) · Zbl 1423.93203
[5] Jajarmi, A.; Hajipour, M.; Mohammadzadeh, E.; Baleanu, D., A new approach for the nonlinear fractional optimal control problems with external persistent disturbances, J Frankl Inst, 355, 9, 3938-3967 (2018) · Zbl 1390.49016
[6] Salati, AB; Shamsi, M.; Torres, DFM, Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems, Commun Nonlinear Sci Numer Simul, 67, 334-350 (2019) · Zbl 1508.26008
[7] Dzielinski, A.; Saewas, G.; Sierociuk, D., Fractional Order Models of Dynamic Systems, Spring Stud Syst Decis Control, 296, 115-152 (2021)
[8] Borah, M.; Roy, BK, Dynamics of the fractional-order chaotic PMSG, its stabilisation using predictive control and circuit validation, IET Electr Power Appl, 11, 5, 707-716 (2017)
[9] Mozyrska, D.; Torres, DFM, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J Math, 26, 2, 210-221 (2010) · Zbl 1224.49048
[10] Hallaji, M.; Dideban, A.; Khanesar, MA; Vahidyan Kamyad, A., Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems, Chaos Solitons Fract, 115, 325-340 (2018) · Zbl 1416.93084
[11] Kumar, V.; Rana, KPS, Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload, J Frankl Inst, 354, 2, 993-1022 (2017) · Zbl 1355.93099
[12] Abolvafaei, M.; Ganjefar, S., Maximum power extraction from wind energy system using homotopy singular perturbation and fast terminal sliding mode method, Renew Energy, 148, 611-626 (2020)
[13] Abolvafaei, M.; Ganjefar, S., Maximum power extraction from fractional order doubly fed induction generator based wind turbines using homotopy singular perturbation method, Int J Electr Power Energy Syst, 119, 105889 (2019)
[14] Sierociuk, D.; Skovranek, T.; Macias, M.; Podlubny, I.; Petras, I.; Dzielinski, A.; Ziubinski, P., Diffusion process modeling by using fractional-order models, Appl Math Comput, 257, 2-11 (2015)
[15] Ahmed, E., On a fractional model for earthquakes, Appl Math Comput, 178, 207-211 (2006) · Zbl 1130.86309
[16] Scalas, E.; Gorenflo, R.; Mainardi, F., Fractional calculus and continuous-time finance, Phys Stat Mech Appl, 284, 1, 376-384 (2000)
[17] Sierociuk, D.; Dzielinski, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T., Modelling heat transfer in heterogeneous media using fractional calculus, Philos Trans R Soc Math Phys Eng Sci, 371, 1990 (2013) · Zbl 1382.80004
[18] Kokotovic P, Barbara S, Khalil H (1999) Singular perturbation methods in control analysis and design · Zbl 0989.93001
[19] Naidu, DS, Singular perturbations and time scales in control theory and applications: an overview, Dyn Contin Discret Impuls Syst Ser B Appl Algorithm, 9, 2, 233-278 (2002) · Zbl 1041.93002
[20] Redmann M, Freitag MA (2016) Balanced truncation and singular perturbation approximation model order reduction for stochastically controlled linear systems. pp 1-25
[21] Sambariya, DK; Sharma, O., Model order reduction using Routh approximation and Cuckoo search algorithm, J. Autom. Control, 4, 1, 1-9 (2016)
[22] Singh, J.; Vishwakarma, CB; Chattterjee, K., Biased reduction method by combining improved modified pole clustering and improved Pade approximations, Appl Math Model, 40, 2, 1418-1426 (2016) · Zbl 1446.93006
[23] Tavakoli-Kakhki, M.; Haeri, M., Model reduction in commensurate fractional-order linear systems, Proc Inst Mech Eng Part I J Syst Control Eng, 223, 4, 493-505 (2009)
[24] Rydel, M.; Stanisławski, R.; Latawiec, KJ; Gałek, M., Model order reduction of commensurate linear discrete-time fractional-order systems, IFAC-PapersOnLine, 51, 1, 536-541 (2018) · Zbl 1425.93065
[25] Tabatabaei, M.; Haeri, M., Design of fractional order proportional-integral-derivative controller based on moment matching and characteristic ratio assignment method, Proc Inst Mech Eng Part I J Syst Control Eng, 225, 8, 1040-1053 (2011)
[26] Tavakoli-Kakhki, M.; Haeri, M., Fractional order model reduction approach based on retention of the dominant dynamics: application in IMC based tuning of FOPI and FOPID controllers, ISA Trans, 50, 3, 432-442 (2011)
[27] Tavakoli-Kakhki, M.; Haeri, M.; Tavazoei, MS, Simple fractional order model structures and their applications in control system design’, Eur J Control, 16, 6, 680-694 (2010) · Zbl 1216.93053
[28] Jiang, YL; Xiao, ZH, Arnoldi-based model reduction for fractional order linear systems, Int J Syst Sci, 46, 8, 1411-1420 (2015) · Zbl 1312.93025
[29] Roy, SCD, On the realization of a constant-argument immittance or fractional operator, IEEE Trans Circuit Theory, 14, 3, 264-274 (1967)
[30] Carlson, G.; Halijak, C., Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process, IEEE Trans Circuit Theory, 11, 2, 210-213 (1964)
[31] Matsuda, K.; Fujii, H., H(infinity) optimized wave-absorbing control—analytical and experimental results, J Guid Control Dyn, 16, 6, 1146-1153 (1993) · Zbl 0800.93313
[32] Charef, A.; Sun, HH; Tsao, YY; Onaral, B., Fractal system as represented by singularity function, IEEE Trans Automat Control, 37, 9, 1465-1470 (1992) · Zbl 0825.58027
[33] Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, FM, Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE Trans Circuits Syst I Fundam Theory Appl, 47, 1, 25-39 (2000)
[34] Wei, Y.; Tse, PW; Du, B.; Wang, Y., An innovative fixed-pole numerical approximation for fractional order systems, ISA Trans, 62, 94-102 (2016)
[35] Liang, S.; Peng, C.; Liao, Z.; Wang, Y., State space approximation for general fractional order dynamic systems, Int J Syst Sci, 45, 10, 2203-2212 (2014) · Zbl 1317.93104
[36] Deniz, FN; Alagoz, BB; Tan, N.; Atherton, DP, An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators, ISA Trans, 62, 154-163 (2016)
[37] AbdelAty, AM; Elwakil, AS; Radwan, AG; Psychalinos, C.; Maundy, BJ, Approximation of the fractional-order laplacian Sα as a weighted sum of first-order high-pass filters, IEEE Trans Circuits Syst II Express Briefs, 65, 8, 1114-1118 (2018)
[38] Tavazoei, MS; Haeri, M.; Bolouki, S.; Siami, M., Stability preservation analysis for frequency-based methods in numerical simulation of fractional order systems, SIAM J Numer Anal, 47, 1, 321-338 (2008) · Zbl 1203.26012
[39] Tavazoei, MS; Haeri, M., Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Anal Theory Methods Appl, 69, 4, 1299-1320 (2008) · Zbl 1148.65094
[40] Tavazoei, MS; Haeri, M., Rational approximations in the simulation and implementation of fractional-order dynamics: a descriptor system approach, Automatica, 46, 1, 94-100 (2010) · Zbl 1213.93087
[41] He, JH, Homotopy perturbation technique, Comput Methods Appl Mech Eng, 178, 3-4, 257-262 (1999) · Zbl 0956.70017
[42] He, JH, Coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int J Non Linear Mech, 35, 1, 37-43 (2000) · Zbl 1068.74618
[43] Nagarale, RM; Patre, BM, Composite fuzzy sliding mode control of nonlinear singularly perturbed systems, ISA Trans, 53, 3, 679-689 (2014)
[44] Sun, T.; Liang, D.; Song, Y., Singular-perturbation-based nonlinear hybrid control of redundant parallel robot, IEEE Trans Ind Electron, 65, 4, 3326-3336 (2018)
[45] Mohammadi, Y.; Ganjefar, S., Quarter car active suspension system: minimum time controller design using singular perturbation method, Int J Control Autom Syst, 15, 6, 2538-2550 (2017)
[46] Lee, J.; Mukherjee, R.; Khalil, HK, Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties, Automatica, 54, 146-157 (2015) · Zbl 1318.93027
[47] Al-Mdallal, QM; Syam, MI, An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order, Commun Nonlinear Sci Numer Simul, 17, 6, 2299-2308 (2012) · Zbl 1259.34008
[48] Syam, MI; Omar, MA, A numerical method for solving a class of nonlinear second order fractional volterra integro-differntial type of singularly perturbed problems, Mathematics, 6, 4, 48 (2018) · Zbl 1448.65286
[49] Ganjefar, S.; Rezaei, S., Modified homotopy perturbation method for optimal control problems using the Padé approximant, Appl Math Model, 1, 1-20 (2016) · Zbl 1471.49019
[50] Zhang, X.; Zhao, J.; Liu, J.; Tang, B., Homotopy perturbation method for two dimensional time-fractional wave equation, Appl Math Model, 38, 23, 5545-5552 (2014) · Zbl 1429.65266
[51] Odibat, Z.; Momani, S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fract, 36, 1, 167-174 (2008) · Zbl 1152.34311
[52] Sakar, MG; Uludag, F.; Erdogan, F., Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method, Appl Math Model, 40, 13-14, 6639-6649 (2016) · Zbl 1465.65113
[53] Yildirim, A., He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations, Int J Comput Math, 87, 13, 2998-3006 (2010) · Zbl 1206.65239
[54] Singh, MK; Chatterjee, A., Solution of one-dimensional space- and time-fractional advection-dispersion equation by homotopy perturbation method, Acta Geophys, 65, 2, 353-361 (2017)
[55] Irandoust-Pakchin, S.; Javidi, M.; Kheiri, H., Analytical solutions for the fractional nonlinear cable equation using a modified homotopy perturbation and separation of variables methods, Comput Math Math Phys, 56, 1, 1-28 (2016) · Zbl 1342.65200
[56] Ateş, I.; Zegeling, PA, A homotopy perturbation method for fractional-order advection-diffusion-reaction boundary-value problems, Appl Math Model, 47, 425-441 (2017) · Zbl 1446.34007
[57] Yang, Y-J; Wang, S-Q, An improved homotopy perturbation method for solving local fractional nonlinear oscillators, J Low Freq Noise Vib Act Control, 1, 146134841882067 (2019)
[58] Tiwana, MH; Maqbool, K.; Mann, AB, Homotopy perturbation Laplace transform solution of fractional non-linear reaction diffusion system of Lotka-Volterra type differential equation, Eng Sci Technol Int J, 20, 2, 672-678 (2017)
[59] Massa, F.; Turpin, I.; Tison, T., From homotopy perturbation technique to reduced order model for multiparametric modal analysis of large finite element models, Mech Syst Signal Process, 96, 291-302 (2017)
[60] Deepika, D.; Kaur, S.; Narayan, S., Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control, Chaos Solitons Fractals, 115, 196-203 (2018) · Zbl 1416.93123
[61] Weyl, H., Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung, Vierteljschr. Naturforsch. Gesellsch. Zurich, 62, 296-302 (1917) · JFM 46.0437.01
[62] Miller, KS; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), New York: Wiley, New York · Zbl 0789.26002
[63] Riesz, M., L’integrale de Riemann-Liouville et Ie Probleme de Cauchy, Acta Math., 81, 1, 1-223 (1949) · Zbl 0033.27601
[64] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[65] Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math Sci Eng vol 198, Academic Press · Zbl 0924.34008
[66] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, J Comput Appl Math, 264, 65-70 (2014) · Zbl 1297.26013
[67] Li, Y.; Chen, YQ; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 8, 1965-1969 (2009) · Zbl 1185.93062
[68] Khalil, HK; Grizzle, J., Nonlinear systems (2002), Upper Saddle River: Prentice Hall, Upper Saddle River
[69] Chen, W.; Dai, H.; Song, Y.; Zhang, Z., Convex Lyapunov functions for stability analysis of fractional order systems, IET Control Theory Appl, 11, 7, 1070-1074 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.